Skip to main content
Log in

Compensatory upregulation of MT2A alleviates neurogenic intermittent claudication through inhibiting activated p38 MAPK-mediated neuronal apoptosis

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Neurogenic intermittent claudication (NIC), a classic symptom of lumbar spinal stenosis (LSS), is associated with neuronal apoptosis. To explore the novel therapeutic target of NIC treatment, we constructed the rat model of NIC by cauda equina compression (CEC) method and collected dorsal root ganglion (DRG) tissues, a region responsible for sensory and motor function, for mRNA sequencing. Bioinformatic analysis of mRNA sequencing indicated that upregulated metallothionein 2A (MT2A), an apoptosis-regulating gene belonging to the metallothionein family, might participate in NIC progression. Activated p38 MAPK mediated motor dysfunction following LSS and it was also found in DRG tissues of rats with NIC. Therefore, we supposed that MT2A might affect NIC progression by regulating p38 MAPK pathway. Then the rat model of NIC was used to explore the exact role of MT2A. Rats at day 7 post-CEC exhibited poorer motor function and had two-fold MT2A expression in DRG tissues compared with rats with sham operation. Co-localization analysis showed that MT2A was highly expressed in neurons, but not in microglia or astrocytes. Subsequently, neurons isolated from DRG tissues of rats were exposed to hypoxia condition (3% O2, 92% N2, 5% CO2) to induce cell damage. Gain of MT2A function in neurons was performed by lentivirus-mediated overexpression. MT2A overexpression inhibited apoptosis by inactivating p38 MAPK in hypoxia-exposed neurons. Our findings indicated that high MT2A expression was related to NIC progression, and MT2A overexpression protected against NIC through inhibiting activated p38 MAPK-mediated neuronal apoptosis in DRG tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of the current study are available from the corresponding author upon reasonable request.

References

  1. Williamson E, Boniface G, Marian IR, Dutton SJ, Garrett A, Morris A, et al. The Clinical effectiveness of a physiotherapy delivered physical and psychological group intervention for older adults with neurogenic claudication: the BOOST randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2022;77(8):1654–64. https://doi.org/10.1093/gerona/glac063.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jensen RK, Harhangi BS, Huygen F, Koes B. Lumbar spinal stenosis. BMJ. 2021;373:n1581. https://doi.org/10.1136/bmj.n1581.

    Article  PubMed  Google Scholar 

  3. Cao YL, Duan Y, Zhu LX, Zhan YN, Min SX, Jin AM. TGF-β1, in association with the increased expression of connective tissue growth factor, induce the hypertrophy of the ligamentum flavum through the p38 MAPK pathway. Int J Mol Med. 2016;38(2):391–8. https://doi.org/10.3892/ijmm.2016.2631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Walter KL, O’Toole JE. Lumbar Spinal Stenosis. JAMA. 2022;328(3):310. https://doi.org/10.1001/jama.2022.6137.

    Article  PubMed  Google Scholar 

  5. Ishimoto Y, Yoshimura N, Muraki S, Yamada H, Nagata K, Hashizume H, et al. Associations between radiographic lumbar spinal stenosis and clinical symptoms in the general population: the wakayama spine study. Osteoarthr Cartil. 2013;21(6):783–8. https://doi.org/10.1016/j.joca.2013.02.656.

    Article  CAS  Google Scholar 

  6. Ma B, Shi J, Jia L, Yuan W, Wu J, Fu Z, et al. Over-expression of PUMA correlates with the apoptosis of spinal cord cells in rat neuropathic intermittent claudication model. PLoS ONE. 2013;8(5):e56580. https://doi.org/10.1371/journal.pone.0056580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deer TR, Kim CK, Bowman RG 2nd, Ranson MT, Yee BS. Study of percutaneous lumbar decompression and treatment algorithm for patients suffering from neurogenic claudication. Pain Physician. 2012;15(6):451–60.

    Article  PubMed  Google Scholar 

  8. Jensen RK, Lauridsen HH, Andresen ADK, Mieritz RM, Schiottz-Christensen B, Vach W. Diagnostic screening for lumbar spinal stenosis. Clin Epidemiol. 2020;12:891–905. https://doi.org/10.2147/CLEP.S263646.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bussieres A, Cancelliere C, Ammendolia C, Comer CM, Zoubi FA, Chatillon CE, et al. Non-surgical interventions for lumbar spinal stenosis leading to neurogenic claudication: a clinical practice guideline. J Pain. 2021;22(9):1015–39. https://doi.org/10.1016/j.jpain.2021.03.147.

    Article  PubMed  Google Scholar 

  10. Chuang HC, Tsai KL, Tsai KJ, Tu TY, Shyong YJ, Jou IM, et al. Oxidative stress mediates age-related hypertrophy of ligamentum flavum by inducing inflammation, fibrosis and apoptosis through activating Akt and MAPK pathways. Aging (Albany NY). 2020;12(23):24168–83. https://doi.org/10.18632/aging.104105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang Y, Xu J, Su Q, Wu Y, Li Q, Ma Z, et al. Lysophosphatidic acid induced apoptosis, DNA damage, and oxidative stress in spinal cord neurons by upregulating LPA4/LPA6 receptors. Mediat Inflamm. 2022;2022:1818758. https://doi.org/10.1155/2022/1818758.

    Article  CAS  Google Scholar 

  12. Kobayashi S, Uchida K, Yayama T, Takeno K, Miyazaki T, Shimada S, et al. Motor neuron involvement in experimental lumbar nerve root compression : a light and electron microscopic study. Spine. 2007;32(6):627–34. https://doi.org/10.1097/01.brs.0000257559.84494.15.

    Article  PubMed  Google Scholar 

  13. Park SH, Hong JY, Kim WK, Shin JS, Lee J, Ha IH, et al. Effects of SHINBARO2 on rat models of lumbar spinal stenosis. Mediat Inflamm. 2019;2019:7651470. https://doi.org/10.1155/2019/7651470.

    Article  CAS  Google Scholar 

  14. Ito T, Ohtori S, Inoue G, Koshi T, Doya H, Ozawa T, et al. Glial phosphorylated p38 MAP kinase mediates pain in a rat model of lumbar disc herniation and induces motor dysfunction in a rat model of lumbar spinal canal stenosis. Spine. 2007;32(2):159–67. https://doi.org/10.1097/01.brs.0000251437.10545.e9.

    Article  PubMed  Google Scholar 

  15. Shunmugavel A, Martin MM, Khan M, Copay AG, Subach BR, Schuler TC, et al. Simvastatin ameliorates cauda equina compression injury in a rat model of lumbar spinal stenosis. J Neuroimmune Pharmacol. 2013;8(1):274–86. https://doi.org/10.1007/s11481-012-9419-3.

    Article  PubMed  Google Scholar 

  16. Sung HC, Chang KS, Chen ST, Hsu SY, Lin YH, Hou CP, et al. Metallothionein 2A with antioxidant and antitumor activity is upregulated by caffeic acid phenethyl ester in human bladder carcinoma cells. Antioxidants (Basel). 2022. https://doi.org/10.3390/antiox11081509.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kwak SY, Jang WI, Park S, Cho SS, Lee SB, Kim MJ, et al. Metallothionein 2 activation by pravastatin reinforces epithelial integrity and ameliorates radiation-induced enteropathy. EBioMedicine. 2021;73:103641. https://doi.org/10.1016/j.ebiom.2021.103641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lores-Padin A, Mavrakis E, Fernandez B, Garcia M, Gonzalez-Iglesias H, Pereiro R, et al. Gold nanoclusters as elemental label for the sequential quantification of apolipoprotein E and metallothionein 2A in individual human cells of the retinal pigment epithelium using single cell-ICP-MS. Anal Chim Acta. 2022;1203:339701. https://doi.org/10.1016/j.aca.2022.339701.

    Article  CAS  PubMed  Google Scholar 

  19. Voinsky I, Zoabi Y, Shomron N, Harel M, Cassuto H, Tam J, et al. Blood RNA Sequencing Indicates upregulated BATF2 and LY6E and downregulated ISG15 and MT2A expression in children with autism spectrum disorder. Int J Mol Sci. 2022;23(17):9843. https://doi.org/10.3390/ijms23179843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu X, Quan J, Shen Z, Zhang Z, Chen Z, Li L, et al. Metallothionein 2A (MT2A) controls cell proliferation and liver metastasis by controlling the MST1/LATS2/YAP1 signaling pathway in colorectal cancer. Cancer Cell Int. 2022;22(1):205. https://doi.org/10.1186/s12935-022-02623-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wahyudi LD, Yu SH, Cho MK. The effect of curcumin on the cadmium-induced mitochondrial apoptosis pathway by metallothionein 2A regulation. Life Sci. 2022;310:121076. https://doi.org/10.1016/j.lfs.2022.121076.

    Article  CAS  PubMed  Google Scholar 

  22. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12(1):1–21. https://doi.org/10.1089/neu.1995.12.1.

    Article  CAS  PubMed  Google Scholar 

  23. Takenobu Y, Katsube N, Marsala M, Kondo K. Model of neuropathic intermittent claudication in the rat: methodology and application. J Neurosci Methods. 2001;104(2):191–8. https://doi.org/10.1016/s0165-0270(00)00342-3.

    Article  CAS  PubMed  Google Scholar 

  24. Zanos TP, Silverman HA, Levy T, Tsaava T, Battinelli E, Lorraine PW, et al. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity. Proc Natl Acad Sci U S A. 2018;115(21):E4843-e4852. https://doi.org/10.1073/pnas.1719083115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sui X, Kong N, Ye L, Han W, Zhou J, Zhang Q, et al. p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett. 2014;344(2):174–9. https://doi.org/10.1016/j.canlet.2013.11.019.

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi H, Aoki Y, Saito J, Nakajima A, Sonobe M, Akatsu Y, et al. Time course of changes in serum oxidative stress markers to predict outcomes for surgical treatment of lumbar degenerative disorders. Oxid Med Cell Longev. 2020;2020:5649767. https://doi.org/10.1155/2020/5649767.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhai G, Liang W, Xu Y. High expression of lysophosphatidic acid induces nerve injury in LSS patients via AKT mediated NF-κB p65 pathway. Front Pharmacol. 2021;12:641435. https://doi.org/10.3389/fphar.2021.641435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee J, Choi H, Park C, Jeon S, Yune T. Jmjd3 mediates neuropathic pain by inducing macrophage infiltration and activation in lumbar spinal stenosis animal model. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms222413426.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fukutake T. Intermittent claudication secondary to spine and/or spinal cord diseases. Brain Nerve. 2021;73(6):671–83. https://doi.org/10.11477/mf.1416201818.

    Article  PubMed  Google Scholar 

  30. Deer T, Sayed D, Michels J, Josephson Y, Li S, Calodney AK. A review of lumbar spinal stenosis with intermittent neurogenic claudication: disease and diagnosis. Pain Med. 2019;20(Suppl 2):S32-s44.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Desai A, Ball PA, Bekelis K, Lurie J, Mirza SK, Tosteson TD, et al. SPORT: Does incidental durotomy affect longterm outcomes in cases of spinal stenosis? Neurosurgery. 2015. https://doi.org/10.1227/01.neu.0000462078.58454.f4. (discussion S63).

    Article  PubMed  Google Scholar 

  32. Gao QY, Wei FL, Li T, Zhu KL, Du MR, Heng W, et al. Oblique lateral interbody fusion vs minimally invasive transforaminal lumbar interbody fusion for lumbar spinal stenosis: a retrospective cohort study. Front Med (Lausanne). 2022. https://doi.org/10.3389/fmed.2022.829426.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ahn Y, Oh HK, Kim H, Lee SH, Lee HN. Percutaneous endoscopic lumbar foraminotomy: an advanced surgical technique and clinical outcomes. Neurosurgery. 2014;75(2):124–33. https://doi.org/10.1227/neu.0000000000000361. (discussion 132-123).

    Article  PubMed  Google Scholar 

  34. Berenpas F, Weerdesteyn V, Geurts AC, van Alfen N. Long-term use of implanted peroneal functional electrical stimulation for stroke-affected gait: the effects on muscle and motor nerve. J Neuroeng Rehabil. 2019;16(1):86. https://doi.org/10.1186/s12984-019-0556-2.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kobayashi S. Pathophysiology, diagnosis and treatment of intermittent claudication in patients with lumbar canal stenosis. World J Orthop. 2014;5(2):134–45. https://doi.org/10.5312/wjo.v5.i2.134.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gitelman A, Hishmeh S, Morelli BN, Joseph SA Jr, Casden A, Kuflik P, et al. Cauda equina syndrome: a comprehensive review. Am J Orthop (Belle Mead NJ). 2008;37(11):556–62.

    PubMed  Google Scholar 

  37. Liu Y, Yang R, Kong Q, Wang Y, Zhang B, Sun J, et al. Metabolomic changes in rat model of cauda equina injury. World Neurosurg. 2017;102:449–58. https://doi.org/10.1016/j.wneu.2017.03.072.

    Article  CAS  PubMed  Google Scholar 

  38. Khan M, Shunmugavel A, Dhammu TS, Matsuda F, Singh AK, Singh I. Oral administration of cytosolic PLA2 inhibitor arachidonyl trifluoromethyl ketone ameliorates cauda equina compression injury in rats. J Neuroinflamm. 2015;12:94. https://doi.org/10.1186/s12974-015-0311-y.

    Article  CAS  Google Scholar 

  39. Kaur H, Xu N, Doycheva DM, Malaguit J, Tang J, Zhang JH. Recombinant Slit2 attenuates neuronal apoptosis via the Robo1-srGAP1 pathway in a rat model of neonatal HIE. Neuropharmacology. 2019;158:107727. https://doi.org/10.1016/j.neuropharm.2019.107727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chio JCT, Wang J, Badner A, Hong J, Surendran V, Fehlings MG. The effects of human immunoglobulin G on enhancing tissue protection and neurobehavioral recovery after traumatic cervical spinal cord injury are mediated through the neurovascular unit. J Neuroinflamm. 2019;16(1):141. https://doi.org/10.1186/s12974-019-1518-0.

    Article  CAS  Google Scholar 

  41. Kim H, Hong JY, Jeon WJ, Lee J, Lee YJ, Ha IH. Melittin regulates iron homeostasis and mediates macrophage polarization in rats with lumbar spinal stenosis. Biomed Pharmacother. 2022;156:113776. https://doi.org/10.1016/j.biopha.2022.113776.

    Article  CAS  PubMed  Google Scholar 

  42. Kim H, Hong JY, Jeon WJ, Lee J, Ha IH. Evaluation of the effects of differences in silicone hardness on rat model of lumbar spinal stenosis. PLoS ONE. 2021;16(5):e0251464. https://doi.org/10.1371/journal.pone.0251464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hsu YC, Chuang HC, Tsai KL, Tu TY, Shyong YJ, Kuo CH, et al. Administration of N-acetylcysteine to regress the fibrogenic and proinflammatory effects of oxidative stress in hypertrophic ligamentum flavum cells. Oxid Med Cell Longev. 2022;2022:1380353. https://doi.org/10.1155/2022/1380353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tan J, Shi J, Shi G, Liu Y, Liu X, Wang C, et al. Changes in compressed neurons from dogs with acute and severe cauda equina constrictions following intrathecal injection of brain-derived neurotrophic factor-conjugated polymer nanoparticles. Neural Regen Res. 2013;8(3):233–43. https://doi.org/10.3969/j.issn.1673-5374.2013.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mehlenbacher MR, Elsiesy R, Lakha R, Villones RLE, Orman M, Vizcarra CL, et al. Metal binding and interdomain thermodynamics of mammalian metallothionein-3: enthalpically favoured Cu(+) supplants entropically favoured Zn(2+) to form Cu(4) (+) clusters under physiological conditions. Chem Sci. 2022;13(18):5289–304. https://doi.org/10.1039/d2sc00676f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Na H, Li X, Zhang X, Xu Y, Sun Y, Cui J, et al. lncRNA STEAP3-AS1 modulates cell cycle progression via affecting CDKN1C expression through steap3 in colon cancer. Mol Ther Nucleic Acids. 2020;21:480–91. https://doi.org/10.1016/j.omtn.2020.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang XL, Schnoor M, Yin LM. Metallothionein-2: An emerging target in inflammatory diseases and cancers. Pharmacol Ther. 2023;244:108374. https://doi.org/10.1016/j.pharmthera.2023.108374.

    Article  CAS  PubMed  Google Scholar 

  48. Huang X, Deng J, Xu T, Xin W, Zhang Y, Ruan X. Downregulation of metallothionein-2 contributes to oxaliplatin-induced neuropathic pain. J Neuroinflamm. 2021;18(1):91. https://doi.org/10.1186/s12974-021-02139-6.

    Article  CAS  Google Scholar 

  49. Li J, Lei Y, Zhao Y. Metallothionein-2A protects cardiomyocytes from hypoxia/reper-fusion through inhibiting p38. Cell Biochem Biophys. 2023;81(1):69–75. https://doi.org/10.1007/s12013-022-01118-9.

    Article  CAS  PubMed  Google Scholar 

  50. Subhramanyam CS, Wang C, Hu Q, Dheen ST. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol. 2019;94:112–20. https://doi.org/10.1016/j.semcdb.2019.05.004.

    Article  CAS  PubMed  Google Scholar 

  51. Chen NN, Wei F, Wang L, Cui S, Wan Y, Liu S. Tumor necrosis factor alpha induces neural stem cell apoptosis through activating p38 MAPK pathway. Neurochem Res. 2016;41(11):3052–62. https://doi.org/10.1007/s11064-016-2024-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (82071365).

Author information

Authors and Affiliations

Authors

Contributions

C.G. W. and Z.C. W.: conceptualization, interpretation of results, and writing—original draft. Y. Z., X.J. D., and J.H. X.: investigation and data collection. J.W. Z, W. X., Z.R. W., and W. L.: data analysis and visualization. B. M.: conceptualization and writing—review and editing.

Corresponding author

Correspondence to Bin Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Animal experiments were approved by the Animal Welfare Ethics Committee of Tongji Hospital (Approval number: 2021-DW-(101)). All operations were performed in accordance with the US National Research Council's Guide for the Care and Use of Laboratory Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 480 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Wang, Z., Zi, Y. et al. Compensatory upregulation of MT2A alleviates neurogenic intermittent claudication through inhibiting activated p38 MAPK-mediated neuronal apoptosis. Human Cell 37, 675–688 (2024). https://doi.org/10.1007/s13577-024-01043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-024-01043-4

Keywords

Navigation