Skip to main content
Log in

Allantoin mediated regulation of miRNAs for short term salinity stress tolerance in Oryza sativa L. cv. IR-29

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Salinity affects plant in a variety of ways, including ion toxicity, osmotic stress and oxidative damage. Allantoin is a nitrogenous compound derived from purine catabolism that contributes to nitrogen recycling in plants. In rice, accumulation of allantoin in response to salinity stress has been reported. But the role of allantoin under salinity stress is not elucidated till now. Recently, miRNAs have emerged as major regulatory molecules which have been shown to regulate gene expressions during salinity stress condition. To understand the effect of exogenous application of allantoin on miRNAs mediated short-term tolerance of salt sensitive rice genotype IR-29, the relative expression of 10 salinity responsive miRNAs were investigated under salinity stress. The result demonstrates that several miRNA changed their expression pattern in presence of allantoin under salinity. For an example, miRNAs such as osa-miRNA393a, osa-miRNA414, osa-miRNA530 and osa-miR818a were down-regulated under salinity stress condition whereas all these four miRNAs were up-regulated under salinity along with allantoin treated condition indicating that this differential expression under allantoin may play an important role for salinity tolerance of IR-29.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

cDNA:

Complementary DNA

miRNA:

MicroRNA

mM:

Millimolar

nt:

Nucleotides

ROS:

Reactive oxygen species

SnRNA:

Small nuclear RNA

qRT-PCR:

Real-time quantitative transcription PCR

References

  • Ai B, Chen Y, Zhao M, Ding G, Xie J, Zhang F (2021) Overexpression of miR1861h increases tolerance to salt stress in rice (Oryza sativa L.). Genet Resour Crop Evol 68:87–92

    Article  CAS  Google Scholar 

  • Alamillo JM, Díaz-Leal JL, Sánchez-Moran MV, Pineda M (2010) Molecular analysis of ureide accumulation under drought stress in Phaseolus vulgaris L. Plant Cell Env 33:1828–1837

    Article  PubMed  CAS  Google Scholar 

  • Alzahrani SM, Alaraidh IA, Khan MA, Migdadi HM, Alghamdi SS, Alsahli AA (2019) Identification and characterization of salt-responsive microRNAs in Vicia faba by high-throughput sequencing. Genes 10:303

    Article  PubMed Central  CAS  Google Scholar 

  • Barakat A, Sriram A, Park J, Zhebentyayeva T, Main D, Abbott A (2012) Genome wide identification of chilling responsive microRNAs in Prunus persica. BMC Genom 13:1–11

    Article  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bonilla P, Dvorak J, Mackell D, Deal K, Gregorio G (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philippine Agricultural Scientist (Philippines)

  • Brychkova G, Alikulov Z, Fluhr R, Sagi M (2008) A critical role for ureides in dark and senescence-induced purine remobilization is unmasked in the Atxdh1 Arabidopsis mutant. Plant J 54:496–509

    Article  PubMed  CAS  Google Scholar 

  • Coleto I, Pineda M, Rodiño AP, De Ron AM, Alamillo JM (2014) Comparison of inhibition of N2 fixation and ureide accumulation under water deficit in four common bean genotypes of contrasting drought tolerance. Ann Bot 113:1071–1082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corpas FJ, Gomez M, Hernandez JA, Luis A (1993) Metabolism of activated oxygen in peroxisomes from two Pisum sativum L. cultivars with different sensitivity to sodium chloride. J Plant Physiol 141:160–165

    Article  CAS  Google Scholar 

  • Deng PC, Wang L, Cui LC, Feng KW, Liu FY, Du XH, Tong W, Nie XJ, Ji WQ, Weining S (2001) Global identification of microRNAs and their targets in barley under salinity stress. PLoS ONE 10:e0137990

    Article  Google Scholar 

  • Desimone M, Catoni E, Ludewig U, Hilpert M, Schneider A, Kunze R, Tegeder M, Frommer WB, Schumacher K (2002) A novel superfamily of transporters for allantoin and other oxo derivatives of nitrogen heterocyclic compounds in Arabidopsis. Plant Cell 14:847–856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng K, Nie X, Cui L, Deng P, Wang M, Song W (2017) Genome-wide identification and characterization of salinity stress-responsive miRNAs in wild emmer wheat (Triticum turgidum ssp. dicoccoides). Genes 8:156

    Article  PubMed Central  Google Scholar 

  • Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Sign 15:1583–1606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ganie SA, Molla KA, Henry RJ, Bhat KV, Mondal TK (2019) Advances in understanding salt tolerance in rice. Theor Appl Genet 132:851–870

    Article  PubMed  CAS  Google Scholar 

  • Gao P, Bai X, Yang L, Lv D, Pan X, Li Y, Zhu Y (2011) osa-MIR393: a salinity-and alkaline stress-related microRNA gene. Mol Biol Rep 38:237–242

    Article  PubMed  CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:1–8

    Article  Google Scholar 

  • Gus’Kov EP, Prokof’ev VN, Kletskii ME, Kornienko IV, Gapurenko OA, Olekhnovich LP, Chistyakov VA, Shestopalov AV, Sazykina MA, Markeev AV, Shkurat TP (2004) Allantoin as a vitamin. Dokl Biochem Biophys 398:320–324

    Article  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hauck OK, Scharnberg J, Escobar NM, Wanner G, Giavalisco P, Witte CP (2014) Uric acid accumulation in an Arabidopsis urate oxidase mutant impairs seedling establishment by blocking peroxisome maintenance. Plant Cell 26:3090–3100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Iglesias MJ, Terrile MC, Windels D, Lombardo MC, Bartoli CG, Vazquez F, Estelle M, Casalongue CA (2001) Mir393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis. PLoS ONE 9:e107678

    Article  Google Scholar 

  • Irani S, Todd CD (2016) Ureide metabolism under abiotic stress in Arabidopsis thaliana. J Plant Physiol 199:87–95

    Article  PubMed  CAS  Google Scholar 

  • Irani S, Todd CD (2018) Exogenous allantoin increases Arabidopsis seedlings tolerance to NaCl stress and regulates expression of oxidative stress response genes. J Plant Physiol 221:43–50

    Article  PubMed  CAS  Google Scholar 

  • Irani S, Lobo JM, Gray GR, Todd CD (2018) Allantoin accumulation in response to increased growth irradiance in Arabidopsis thaliana. Biol Plant 62:181–187

    Article  CAS  Google Scholar 

  • Jin Q, Xu Y, Mattson N, Li X, Wang B, Zhang X, Jiang H, Liu X, Wang Y, Yao D (2017) Identification of submergence-responsive microRNAs and their targets reveals complex miRNA-mediated regulatory networks in lotus (Nelumbo nucifera Gaertn). Front Plant Sci 8:6–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Khadri M, Pliego L, Soussi M, Lluch C, Ocana A (2001) Ammonium assimilation and ureide metabolism in common bean (Phaseolus vulgaris) nodules under salt stress. Agronomie 21:635–643

    Article  Google Scholar 

  • Khadri M, Tejera NA, Lluch C (2006) Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid supply. J Plant Growth Regul 25:110–119

    Article  CAS  Google Scholar 

  • Khan N, Bano A, Rahman MA, Rathinasabapathi B, Babar MA (2019) UPLC-HRMS-based untargeted metabolic profiling reveals changes in chickpea (Cicer arietinum) metabolome following long-term drought stress. Plant Cell Env 42:115–132

    Article  CAS  Google Scholar 

  • Kramer MF (2011) Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol 95:15

    Article  Google Scholar 

  • Kumar K, Kumar M, Kim SR, Ryu H, Cho YG (2013) Insights into genomics of salt stress response in rice. Rice 6:1–15

    Article  Google Scholar 

  • Lee DK, Redillas MC, Jung H, Choi S, Kim YS, Kim JK (2018) A nitrogen molecular sensing system, comprised of the ALLANTOINASE and UREIDE PERMEASE 1 genes, can be used to monitor N status in rice. Front Plant Sci 9:444

    Article  PubMed  PubMed Central  Google Scholar 

  • Lescano CI, Martini C, Gonzalez CA, Desimone M (2016) Allantoin accumulation mediated by allantoinase down regulation and transport by Ureide Permease 5 confers salt stress tolerance to Arabidopsis plants. Plant Mol Biol 91:581–595

    Article  PubMed  CAS  Google Scholar 

  • Li W, Jia Y, Liu F, Wang F, Fan F, Wang J, Zhu J, Xu Y, Zhong W, Yang J (2019) Integration analysis of small RNA and degradome sequencing reveals MicroRNAs responsive to Dickeyazeae in resistant rice. Int J Mol Sci 20:222

    Article  PubMed Central  Google Scholar 

  • Liu J, Shabala S, Zhang J, Ma G, Chen D, Shabala L, Zhao Q (2020) Melatonin improves rice salinity stress tolerance by NADPH oxidase-dependent control of the plasma membrane K+ transporters and K+ homeostasis. Plant Cell Env 43:2591–2605

    Article  PubMed  CAS  Google Scholar 

  • Macovei A, Tuteja N (2012) microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.). BMC Plant Biol 12:1–12

    Article  Google Scholar 

  • Mittal D, Sharma N, Sharma V, Sopory SK, Sanan-Mishra N (2016) Role of microRNAs in rice plant under salt stress. Ann Appl Biol 168:2–18

    Article  CAS  Google Scholar 

  • Mondal S, Borromeo TH (2016) Screening of salinity tolerance of rice at early seedling stage. J Biosci Agric Res 10:843–847

    Article  Google Scholar 

  • Mondal TK, Ganie SA, Debnath AB (2015) Identification of novel and conserved miRNAs from extreme halophyte, Oryza coarctata, a wild relative of rice. PLoS ONE 10:e0140675

    Article  PubMed  PubMed Central  Google Scholar 

  • Mondal TK, Panda AK, Rawal HC, Sharma TR (2018) Discovery of microRNA-target modules of African rice (Oryza glaberrima) under salinity stress. Sci Rep 8:1–11

    Article  Google Scholar 

  • Mosaad IS, Serag AH, Moustafa-Farag M, Seadh AK (2020) Effect of exogenous proline application on maize yield and the optimum rate of mineral nitrogen under salinity stress. J Plant Nutr 43:354–370

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Nam MH, Bang E, Kwon TY, Kim Y, Kim EH, Cho K, Park WJ, Kim BG, Yoon IS (2015) Metabolite profiling of diverse rice germplasm and identification of conserved metabolic markers of rice roots in response to long-term mild salinity stress. Int J Mol Sci 16:21959–21974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P (2006) The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18:2929–2945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nourimand M, Todd CD (2016) Allantoin increases cadmium tolerance in Arabidopsis via activation of antioxidant mechanisms. Plant Cell Physiol 57:2485–2496

    Article  PubMed  CAS  Google Scholar 

  • Nourimand M, Todd CD (2017) Allantoin contributes to the stress response in cadmium-treated Arabidopsis roots. Plant Physiol Biochem 119:103–109

    Article  PubMed  CAS  Google Scholar 

  • Phillips JR, Dalmay T, Bartels D (2007) The role of small RNAs in abiotic stress. FEBS Lett 581:3592–3597

    Article  PubMed  CAS  Google Scholar 

  • Sagi M, Omarov RT, Lips SH (1998) The Mo-hydroxylases xanthine dehydrogenase and aldehyde oxidase in ryegrass as affected by nitrogen and salinity. Plant Sci 135:125–135

    Article  CAS  Google Scholar 

  • Shabala L, Zhang J, Pottosin I, Bose J, Zhu M, Fuglsang AT, Velarde- Buendia A, Massart A, Hill CB, Roessner U, Bacic A (2016) Cell-type-specific H+- ATPase activity in root tissues enables K+ retention and mediates acclimation of barley (Hordeum vulgare) to salinity stress. Plant Physiol 172:2445–2458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun Y, Mu C, Zheng H, Lu S, Zhang H, Zhang X, Liu X (2018) Exogenous Pi supplementation improved the salt tolerance of maize (Zea mays L.) by promoting Na+ exclusion. Sci Rep 8:1–13

    Article  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:1–17

    Article  Google Scholar 

  • Tabatabaei SJ (2006) Effects of salinity and N on the growth, photosynthesis and N status of olive (Olea europaea L.) trees. Sci Hortic 108:432–438

    Article  CAS  Google Scholar 

  • Varkonyi-Gasic E, Wu R, Woo M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:1–12

    Article  Google Scholar 

  • Ventura Y, Myrzabayeva M, Alikulov Z, Omarov R, Khozin-Goldberg I, Sagi M (2014) Effects of salinity on flowering, morphology, biomass accumulation and leaf metabolites in an edible halophyte. AoB Plants 6:1–11

    Article  CAS  Google Scholar 

  • Wang JW (2014) Regulation of flowering time by the miR156-mediated age pathway. J Exp Bot 65:4723–4730

    Article  PubMed  CAS  Google Scholar 

  • Wang YC, Qu GZ, Li HY, Wu YJ, Wang C, Liu GF, Yang CP (2010) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37:1119–1124

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Kounosu Y, Shimada H, Sakamoto A (2014) Arabidopsis xanthine dehydrogenase mutants defective in purine degradation show a compromised protective response to drought and oxidative stress. Plant Biotech 14:0117–0131

    Google Scholar 

  • Werner AK, Witte CP (2011) The biochemistry of nitrogen mobilization: purine ring catabolism. Trends Plant Sci 16:381–387

    Article  PubMed  CAS  Google Scholar 

  • Xia KF, Wang R, Ou XJ, Fang ZM, Tian CG, Duan J, Wang YQ, Zhang MY (2001) OsTIR1 and osAFB2 down regulation via osmir393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS ONE 7:364–373

    Google Scholar 

  • Yang Z, Zhu P, Kang H, Liu L, Cao Q, Sun J, Dong T, Zhu M, Li Z, Xu T (2020) High-throughput deep sequencing reveals the important role that microRNAs play in the salt response in sweet potato (Ipomoea batatas L.). BMC Genom 21:1–16

    Article  Google Scholar 

  • Yoshida S, Forno AD, Cook JH, Gomes KA(1976) Routine procedure for growing rice plants in culture solution. In: Laboratory Manual for Physiological Studies of Rice, 3rd edn. The International Rice Research Institute, Los Baños, Laguna, Philippines, pp 61–65

  • You S, Zhu B, Wang F, Han H, Sun M, Zhu H, Yao Q (2017) A Vitis vinifera xanthine dehydrogenase gene, VvXDH, enhances salinity tolerance in transgenic Arabidopsis. Plant Biotech Rep 11:147–160

    Article  Google Scholar 

  • Zhao B, Ge L, Liang R, Li W, Ruan K, Lin H, Jin Y (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10:1–10

    Article  Google Scholar 

  • Zhou LG, Liu YH, Liu ZC, Kong DY, Duan M, Luo LJ (2010) Genome wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Director, National Institute for Plant Biotechnology (NIPB), New Delhi for providing all the facility. JN is thankfully acknowledges the Council of Scientific & Industrial Research (CSIR), New Delhi for providing the fellowship.

Author information

Authors and Affiliations

Authors

Contributions

TKM conceived the idea and monitored the progress. CN guided JN to do the wet lab work. AKP helped to design the primers. SC and JN developed the manuscript. All contributed to improve the manuscript.

Corresponding author

Correspondence to Tapan Kumar Mondal.

Ethics declarations

Conflict of interest

Authors do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishad, J., Panda, A.K., Chowrasia, S. et al. Allantoin mediated regulation of miRNAs for short term salinity stress tolerance in Oryza sativa L. cv. IR-29. J. Plant Biochem. Biotechnol. 31, 953–960 (2022). https://doi.org/10.1007/s13562-022-00774-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-022-00774-5

Keywords

Navigation