Analysis of promoter activity of PtDrl02 gene in white poplars

  • Huiquan Zheng
  • Yang Lei
  • Zhiyi Zhang
  • Shanzhi Lin
  • Qian Zhang
  • Wenfeng Liu
  • Juan Du
  • Xinmin An
  • Xiyang Zhao
Original Article

Abstract

To determine the transcriptional activity of the promoter of Populus TIR (Toll/interleukin-1 receptor domain)-encoding PtDrl02 gene in perennial plants, β-glucuronidase (GUS) gene expression driven by PtDrl02 promoter was analyzed in white poplars. Agrobacterium-mediated transient expression assays indicated that the PtDrl02 promoter was able to direct the GUS reporter gene transcription in stem tissues of both triploid [(Populus tomentosa × P. bolleana) × P. tomentosa, clone ‘L9’] and diploid (P. tomentosa cv. 1521) white poplars, and that the transcript levels seemed to be comparable to each other. In stably transformed P. tomentosa plants, the PtDrl02 promoter directed-gene (GUS) expression behaved in an aerial-specific manner but with a relatively low level in tissues compared to that of the ACTIN reference. Further investigation revealed that the PtDrl02 promoter activity could be induced by wounding, methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), or high salinity (NaCl) in transgenic P. tomentosa but with a time-course manner. Intriguingly, dynamic expression of the GUS reporter gene driven by PtDrl02 promoter, over given time periods, appeared to be similar to that of the native pathogenesis-related (PR) protein gene (PtPR-1, PtPR-5, or PtPR-10) in transgenic P. tomentosa plants when exposed to the same inducers. Here it was also evidenced that the PtWRYK1 transcription factor conferred a negative effect on PtDrl02 promoter functions in white poplars. Our work provided new information on PtDrl02 promoter activity in poplars, which could be helpful to increase our understanding of the transcription regulation of the Populus TIR-encoding gene by its promoter.

Keywords

Populus Toll/interleukin-1 receptor Promoter Pathogenesis-related protein Transcription factor 

Abbreviations

GUS

β-glucuronidase

LRR

Leucine rich repeat

NBS

Nucleotide binding site

PR

Pathogenesis-related

TIR

Toll/interleukin-1 receptor domain

References

  1. Ameline-Torregrosa C, Wang BB, O’Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB (2008) Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146(1):5–21PubMedCrossRefGoogle Scholar
  2. Bakker E, Borm T, Prins P, van der Vossen E, Uenk G, Arens M, de Boer J, van Eck H, Muskens M, Vossen J, van der Linden G, van Ham R, Klein-Lankhorst R, Visser R, Smant G, Bakker J, Goverse A (2011) A genome-wide genetic map of NB-LRR disease resistance loci in potato. Theor Appl Genet. doi:10.1007/s00122-011-1602-z
  3. Burch-Smith TM, Schiff M, Caplan JL, Tsao J, Czymmek K, Dinesh-Kumar SP (2007) A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol 5(3):e68PubMedCrossRefGoogle Scholar
  4. Edreva A (2005) Pathogenesis-related proteins: research progress in the last 15 years. Gen Appl Plant Physiol 31(1–2):105–124Google Scholar
  5. Gray-Mitsumune M, Molitor EK, Cukovic D, Carlson JE, Douglas CJ (1999) Developmentally regulated patterns of expression directed by poplar PAL promoters in transgenic tobacco and poplar. Plant Mol Biol 39(4):657–669PubMedCrossRefGoogle Scholar
  6. Hwang SH, Lee IA, Yie SW, Hwang DJ (2008) Identification of an OsPR10a promoter region responsive to salicylic acid. Planta 227(5):1141–1150PubMedCrossRefGoogle Scholar
  7. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: betaglucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907PubMedGoogle Scholar
  8. Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers BC, Boerjan W, Martin F (2008) Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66(6):619–636PubMedCrossRefGoogle Scholar
  9. Li Y, Yang S, Yang H, Hua J (2007) The TIR-NB-LRR gene SNC1 is regulated at the transcript level by multiple factors. Mol Plant Microbe Interact 20(11):1449–1456PubMedCrossRefGoogle Scholar
  10. Li Y, Tessaro MJ, Li X, Zhang Y (2010a) Regulation of the expression of plant resistance gene SNC1 by a protein with a conserved BAT2 domain. Plant Physiol 153(3):1425–1434PubMedCrossRefGoogle Scholar
  11. Li Y, Li S, Bi D, Cheng YT, Li X, Zhang Y (2010b) SRFR1 negatively regulates plant NB-LRR resistance protein accumulation to prevent autoimmunity. PLoS Pathogens 6(9):e1001111PubMedCrossRefGoogle Scholar
  12. Liu JJ, Ekramoddoullah AK (2011) Genomic organization, induced expression and promoter activity of a resistance gene analog (PmTNL1) in western white pine (Pinus monticola). Planta 233(5):1041–1053PubMedCrossRefGoogle Scholar
  13. Meyers BC, Morgante M, Michelmore RW (2002) TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J 32(1):77–92PubMedCrossRefGoogle Scholar
  14. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15(4):809–834PubMedCrossRefGoogle Scholar
  15. Mun JH, Yu HJ, Park S, Park BS (2009) Genome-wide identification of NBS-encoding resistance genes in Brassica rapa. Mol Genet Genom 282(6):617–631CrossRefGoogle Scholar
  16. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  17. Nain V, Jaiswal R, Dalal M, Ramesh B, Kumar PA (2005) Polymerase chain reaction analysis of transgenic plants contaminated by Agrobacterium. Plant Mol Biol Rep 23:59–65CrossRefGoogle Scholar
  18. Qu Q, Xing YP, Liu WX, Xu XP, Song YR (2008) Expression pattern and activity of six glutelin gene promoters in transgenic rice. J Exp Bot 59(9):2417–2424CrossRefGoogle Scholar
  19. Rinaldi C, Kohler A, Frey P, Duchaussoy F, Ningre N, Couloux A, Wincker P, Le Thiec D, Fluch S, Martin F, Duplessis S (2007) Transcript profiling of poplar leaves upon infection with compatible and incompatible strains of the foliar rust Melampsora larici-populina. Plant Physiol 144(1):347–366PubMedCrossRefGoogle Scholar
  20. Schmidt S, Lombardi M, Gardiner DM, Ayliffe M, Anderson PA (2007) The M flax rust resistance pre-mRNA is alternatively spliced and contains a complex upstream untranslated region. Theor Appl Genet 115(3):373–382PubMedCrossRefGoogle Scholar
  21. Takken FL, Albrecht M, Tameling WI (2006) Resistance proteins: molecular switches of plant defence. Curr Opin Plant Biol 9(4):383–390PubMedCrossRefGoogle Scholar
  22. Tan X, Meyers BC, Kozik A, West MA, Morgante M, St Clair DA, Bent AF, Michelmore RW (2007) Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biol 7:56PubMedCrossRefGoogle Scholar
  23. Veluthakkal R, Dasgupta MG (2010) Pathogenesis-related genes and proteins in forest tree species. Trees 24:993–1006CrossRefGoogle Scholar
  24. Wang X, Haberer G, Mayer KF (2009) Discovery of cis-elements between sorghum and rice using co-expression and evolutionary conservation. BMC Genom 10:284CrossRefGoogle Scholar
  25. Yang S, Zhang X, Yue JX, Tian D, Chen JQ (2008) Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genom 280(3):187–198CrossRefGoogle Scholar
  26. Yevtushenko DP, Misra S (2010) Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. × P. maximowiczii A. Henry. Plant Cell Rep 29:211–221PubMedCrossRefGoogle Scholar
  27. Yi H, Richards EJ (2007) A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell 19(9):2929–2939PubMedCrossRefGoogle Scholar
  28. Zhang ZY, Li FL, Zhu ZT (1992) Chromosome doubling and triploid breeding of Populus tomentosa Carr. and its hybrid. J Beijing For Univ 14(Suppl):52–58Google Scholar
  29. Zhang ZY, Li FL, Zhu ZT (1997) Doubling technology of pollen chromosome of Populus tomentosa and its hybrids. J Beijing For Univ (English edn) 6:9–20Google Scholar
  30. Zhang Q, Zhang ZY, Lin SZ, Zheng HQ, Lin YZ, An XM, Li Y, Li HX (2008) Characterization of resistance gene analogs with a nucleotide binding site isolated from a triploid white poplar. Plant Biol 10:310–322PubMedCrossRefGoogle Scholar
  31. Zheng HQ, Lin SZ, Zhang Q, Lei Y, Zhang ZY (2009) Functional analysis of 5′ untranslated region of a TIR-NBS-encoding gene from triploid white poplar. Mol Genet Genom 282(4):381–394CrossRefGoogle Scholar
  32. Zheng HQ, Lin SZ, Zhang Q, Lei Y, Hou L, Zhang ZY (2010) Functional identification and regulation of the PtDrl02 gene promoter from triploid white poplar. Plant Cell Rep 29:449–460PubMedCrossRefGoogle Scholar
  33. Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428(6984):764–767PubMedCrossRefGoogle Scholar

Copyright information

© Society for Plant Biochemistry and Biotechnology 2011

Authors and Affiliations

  • Huiquan Zheng
    • 1
    • 2
  • Yang Lei
    • 1
  • Zhiyi Zhang
    • 1
  • Shanzhi Lin
    • 1
  • Qian Zhang
    • 1
    • 2
  • Wenfeng Liu
    • 1
  • Juan Du
    • 1
  • Xinmin An
    • 1
  • Xiyang Zhao
    • 1
  1. 1.National Engineering Laboratory for Tree Breeding, NDRC; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, MOE; Laboratory of Tree and Ornamental Plant Breeding and Biotechnology, SFABeijing Forestry UniversityBeijingPeople’s Republic of China
  2. 2.Guangdong Academy of ForestryGuangzhouPeople’s Republic of China

Personalised recommendations