Skip to main content
Log in

Design of Narrowband Terahertz Filtenna for High-Speed Wireless Communication

  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Narrowband bandpass filters (BPFs) are in great need in future terahertz (THz) technologies to suppress EM signals beyond the operating band. THz filters and antennas play a crucial role in controlling and transmitting THz signals for the application of high data rate (6G) communication, non-destructive sensing, imaging, switching, and filtering. The proposed filtenna is designed using a dual-band THz BPF with a complementary split ring resonator (CSRR) metamaterial (MM). This paper suggests the circle in the pentagon (CP) filtenna and the simulation results show the filtering characteristics of two pass bands with resonant frequency (fr) between 6.3 and 7 THz and between 8 and 9.8 THz with a squared ratio of 0.54. Also, the maximum 3-dB bandwidth (BW) of 1.3 THz, low return loss (RL) of −28.46 dB, and low insertion loss (IL) of almost 0 were attained. The proposed antenna radiates at the frequency of 6.8 THz with an RL of −27.72 dB. The proposed CP filtenna applies to various wireless communication, especially in drone-to-drone communication with excellent data rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of Data and Materials

Data is contained within the article.

References

  1. B. Ferguson, X.C. Zhang, Materials for terahertz science and technology. Nat. Mater. 1(1), 26–33 (2002)

    Article  ADS  Google Scholar 

  2. P.H. Siegel, Terahertz technology. IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002)

    Article  ADS  Google Scholar 

  3. M. Tonouchi, Cutting-edge terahertz technology. Nat. Photonics 1(2), 97–105 (2007)

    Article  ADS  Google Scholar 

  4. M.J. Fitch, R. Osiander, Terahertz waves for communications and sensing. J. Hopkins APL Tech. Dig. 25(4), 348–355 (2004)

    Google Scholar 

  5. W. Yang, Y.S. Lin, Tunable metamaterial filter for optical communication in the terahertz frequency range. Opt. Express 28(12), 17620–17629 (2020)

    Article  ADS  Google Scholar 

  6. T.S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, G.C. Trichopoulos, Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access 7, 78729–78757 (2019)

    Article  Google Scholar 

  7. H. Elayan, O. Amin, B. Shihada, R.M. Shubair, M.S. Alouini, Terahertz band: the last piece of RF spectrum puzzle for communication systems. IEEE Open J. Commun. Soc. 1, 1–32 (2019)

    Article  Google Scholar 

  8. S. Xiao, V.P. Drachev, A.V. Kildishev, X. Ni, U.K. Chettiar, H.K. Yuan, V.M. Shalaev, Loss-free and active optical negative-index metamaterials. Nature 466(7307), 735–738 (2010)

    Article  ADS  Google Scholar 

  9. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C.M. Soukoulis, Magnetic response of metamaterials at 100 terahertz. Science 306(5700), 1351–1353 (2004)

    Article  ADS  Google Scholar 

  10. A. Andryieuski, A.V. Lavrinenko, Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Opt. Express 21(7), 9144–9155 (2013)

    Article  ADS  Google Scholar 

  11. W.T. Chen, A.Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso, A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13(3), 220–226 (2018)

    Article  ADS  Google Scholar 

  12. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, W. Zhang, Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun. 3(1), 1151 (2012)

    Article  ADS  Google Scholar 

  13. D.M. Wu, M.L. Solomon, G.V. Naik, A. García-Etxarri, M. Lawrence, A. Salleo, J.A. Dionne, Chemically responsive elastomers exhibiting unity-order refractive index modulation. Adv. Mater. 30(7), 1703912 (2018)

    Article  Google Scholar 

  14. S. Misra, L. Li, J. Jian, J. Huang, X. Wang, D. Zemlyanov, H. Wang, Tailorable Au nanoparticles embedded in epitaxial TiO2 thin films for tunable optical properties. ACS Appl. Mater. Interfaces 10(38), 32895–32902 (2018)

    Article  Google Scholar 

  15. B. Gerislioglu, A. Ahmadivand, Functional charge transfer plasmon metadevices. Research 1–18 (2020)

  16. A. Ahmadivand, B. Gerislioglu, Z. Ramezani, Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator. Nanoscale 11(17), 8091–8095 (2019)

    Article  Google Scholar 

  17. C. Yuan, X. Mu, C.K. Dunn, J. Haidar, T. Wang, H. Jerry Qi, Thermomechanically triggered two-stage pattern switching of 2D lattices for adaptive structures. Adv. Func. Mater. 28(18), 1705727 (2018)

    Article  Google Scholar 

  18. B. Gerislioglu, A. Ahmadivand, N. Pala, Tunable plasmonic toroidal terahertz metamodulator. Phys. Rev. B 97(16), 161405 (2018)

    Article  ADS  Google Scholar 

  19. B.J. Roxworthy, V.A. Aksyuk, Electrically tunable plasmomechanical oscillators for localized modulation, transduction, and amplification. Optica 5(1), 71–79 (2018)

    Article  ADS  Google Scholar 

  20. P. Cheben, R. Halir, J.H. Schmid, H.A. Atwater, D.R. Smith, Subwavelength integrated photonics. Nature 560(7720), 565–572 (2018)

    Article  ADS  Google Scholar 

  21. C.R. Lee, S.H. Lin, S.M. Wang, J. De Lin, Y.S. Chen, M.C. Hsu, J.K. Liu, T.S. Mo, C.Y. Huang, Optically controllable photonic crystals and passively tunable terahertz metamaterials using dye-doped liquid crystal cells. J. Mater. Chem. C 6(18), 4959–4966 (2018)

    Article  Google Scholar 

  22. Y. Cheng, Y. Zou, H. Luo, F. Chen, X. Mao, Compact ultra-thin seven-band microwave metamaterial absorber based on a single resonator structure. J. Electron. Mater. 48(6), 3939–3946 (2019)

    Article  ADS  Google Scholar 

  23. M. Manjappa, P. Pitchappa, N. Wang, C. Lee, R. Singh, Active control of resonant cloaking in a terahertz MEMS metamaterial. Adv. Opt. Mater. 6(16), 1800141 (2018)

    Article  Google Scholar 

  24. Q. Ye, Y. Liu, H. Lin, M. Li, H. Yang, Multi-band metamaterial absorber made of multi-gap SRRs structure. Appl. Phys. A 107, 155–160 (2012)

    Article  ADS  Google Scholar 

  25. M. Koutsoupidou, I.S. Karanasiou, N. Uzunoglu, Substrate constructed by an array of split ring resonators for a THz planar antenna. J. Comput. Electron. 13, 593–598 (2014)

    Article  Google Scholar 

  26. F. Hu, N. Xu, W. Wang, Y.E. Wang, W. Zhang, J. Han, W. Zhang, A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array. J. Micromech. Microeng. 26(2), 025006 (2016)

    Article  ADS  Google Scholar 

  27. C. Tan, Y. Wang, Z. Yan, X. Nie, Y. He, W. Chen, Superconducting filter based on split-ring resonator structures. IEEE Trans. Appl. Supercond. 29(4), 1–4 (2019)

    Article  Google Scholar 

  28. Y.S. Lin, C.Y. Huang, C. Lee, Reconfiguration of resonance characteristics for terahertz U-shape metamaterial using MEMS mechanism. IEEE J. Sel. Top. Quantum Electron. 21(4), 2700207 (2015)

    Google Scholar 

  29. K. Sagadevan, S. Rajagopalan, The design of split ring resonator (SRR) based terahertz bandpass filter and comparison of various types of filters. J. Phys. Conf. Ser. 1717(1), 012052 (2021). (IOP Publishing)

    Article  Google Scholar 

  30. S. Sahandabadi, S.V.A.D. Makki, Mutual coupling reduction using complementary of SRR with wire MNG structure. Microw. Opt. Technol. Lett. 61(5), 1231–1234 (2019)

    Article  Google Scholar 

  31. K. Sagadevan, T.K. Nandha Kumar, B. Lavanya, Frequency response analysis of octagonal complementary split ring resonator-based metamaterial, in 2022 International Conference on Intelligent Innovations in Engineering and Technology (ICIIET). (IEEE, 2022), pp. 95–98

    Google Scholar 

  32. R. Singh, I.A. Al-Naib, M. Koch, W. Zhang, Asymmetric planar terahertz metamaterials. Opt. Express 18(12), 13044–13050 (2010)

    Article  ADS  Google Scholar 

  33. A.K. Azad, J. Dai, W. Zhang, Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Opt. Lett. 31(5), 634–636 (2006)

    Article  ADS  Google Scholar 

  34. C.M. Soukoulis, T. Koschny, J. Zhou, M. Kafesaki, E.N. Economou, Magnetic response of split ring resonators at terahertz frequencies. Phys. Status Solidi (B) 244(4), 1181–1187 (2007)

    Article  ADS  Google Scholar 

  35. H.O. Moser, B.D.F. Casse, O. Wilhelmi, B.T. Saw, Terahertz response of a microfabricated rod–split-ring-resonator electromagnetic metamaterial. Phys. Rev. Lett. 94(6), 063901 (2005)

    Article  ADS  Google Scholar 

  36. M. Karthikeyan, P. Jayabala, S. Ramachandran, S.S. Dhanabalan, T. Sivanesan, M. Ponnusamy, Tunable optimal dual band metamaterial absorber for high sensitivity THz refractive index sensing. Nanomaterials 12(15), 2693 (2022)

    Article  Google Scholar 

  37. W. Junlin, Z. Binzhen, W. Xin, D. Junping, Flexible dual-band band-stop metamaterials filter for the terahertz region. Opt. Mater. Express 7(5), 1656–1665 (2017)

    Article  ADS  Google Scholar 

  38. M. Choi, B. Kang, Y. Yi, S.H. Lee, I. Kim, J.H. Han, C.G. Choi, Terahertz transmission resonances in complementary multilayered metamaterial with deep subwavelength interlayer spacing. Appl. Phys. Lett. 108(20), 201103 (2016)

    Article  ADS  Google Scholar 

  39. G.L. Wu, W. Mu, D.D.D. Li, Y.C. Jiao, Design of novel dual-band bandpass filter with microstrip meander-loop resonator and CSRR DGS. Prog. Electromagn. Res. 78, 17–24 (2008)

    Article  Google Scholar 

  40. T.H. Lee, K.C. Yoon, K.G. Kim, Miniaturized dual-band bandpass filter using T-shaped line based on stepped impedance resonator with meander line and folded structure. Electronics 11(2), 219 (2022)

    Article  Google Scholar 

  41. T. Luo, Y. Liu, Y. Zou, J. Zhou, W. Liu, G. Wu, C. Sun, Design and optimization of the dual-mode lamb wave resonator and dual-passband filter. Micromachines. 13(1), 87 (2022)

    Article  Google Scholar 

  42. Z.A. Bhat, J.A. Sheikh, S.D. Khan, I. Bashir, S.A. Parah, A new method of isolation enhancement of dual band band-pass filter using composite mode co-planar waveguide structure for 5G and body centric applications. Iran. J. Sci. Technol. Trans. Electr. Eng. 1–10 (2022)

  43. K.D. Xu, S. Xia, Y. Jiang, Y.J. Guo, Y. Liu, R. Wu, Q. Chen, Compact millimeter-wave on-chip dual-band bandpass filter in 0.15-μm GaAs technology. IEEE J. Electron Devices Soc. 10, 152–156 (2022)

    Article  Google Scholar 

  44. H. Yang, D. Zhang, Y. Zhang, C. Bian, G. Sun, A dual-band bandpass filter with the second passband independently tunable. J. Phys. Conf. Ser. 2187(1), 012005 (2022)

    Article  Google Scholar 

  45. A. Basit, M.I. Khattak, M. Al-Hasan, J. Nebhen, A. Jan, Design and analysis of a compact GSM/GPS dual-band bandpass filter using a T-shaped resonator. J. Electromagn. Eng. Sci. 22(2), 138–145 (2022)

    Article  Google Scholar 

  46. B. Yang, M. Ouyang, H. Ren, C. Ma, Y. Zhao, Y. Zhang, Y. Fu, A dual-frequency terahertz metasurface capable of distinguishing the handedness of circularly polarized light. Coatings 12(6), 736 (2022)

    Article  Google Scholar 

  47. S. Ullah, C. Ruan, T.U. Haq, X. Zhang, High performance THz patch antenna using photonic band gap and defected ground structure. J. Electromagn. Waves Appl. 33(15), 1943–1954 (2019)

    Article  ADS  Google Scholar 

  48. D. Sathish Kumar, S. Poonguzhali, A. Sivasangari, S. Lalithakumari, G. Rajalakshmi, R. Pandian, Optimization of tube slot patch antenna for terahertz systems, in 2023 International Conference on System, Computation, Automation and Networking (ICSCAN). (IEEE, Puducherry, 2023), pp. 1–5. https://doi.org/10.1109/ICSCAN58655.2023.10395486

    Chapter  Google Scholar 

  49. R.K. Kushwaha, P. Karuppanan, Investigation and design of microstrip patch antenna employed on PCs substrates in THz regime. Aust. J. Electr. Electron. Eng. 18(2), 118–125 (2021)

    Article  Google Scholar 

  50. R. Pandian, S.K. Danasegaran, S. Lalithakumari, G. Rajalakshmi, G. Sathish Kumar, Photonic crystal based hour glass patch antenna for the detection of breast cancer. Opt. Quantum Electron. 56, 763 (2024). https://doi.org/10.1007/s11082-024-06657-4

    Article  Google Scholar 

  51. S.K. Danasegaran, E.C. Britto, K. Sagadevan, M. Paranthaman, S. Poonguzhali, M. Krishnakumar, Design and investigation of photonic crystal antenna performance for expeditious data rate in wireless communication. Braz. J. Phys. 54, 31 (2024). https://doi.org/10.1007/s13538-023-01408-4

    Article  ADS  Google Scholar 

  52. S. Lalithakumari, S.K. Danasegaran, G. Rajalakshmi, R. Pandian, E.C. Britto, Analysis of wave propagation in hybrid metamaterial structure for terahertz applications. Braz. J. Phys. 53, 140 (2023). https://doi.org/10.1007/s13538-023-01351-4

    Article  ADS  Google Scholar 

  53. E.C. Britto, S.K. Danasegaran, K. Sagadevan, Performance analysis of SSRR in high-speed terahertz antenna for biomedical applications, in Metamaterial technology and intelligent metasurfaces for wireless communication systems. ed. by S. Mehta, A. Abougreen (IGI Global, 2023), pp. 180–199. https://doi.org/10.4018/978-1-6684-8287-2.ch008

    Chapter  Google Scholar 

  54. P.P. Shome, T. Khan, S.K. Koul, Y.M. Antar, Filtenna designs for radio-frequency front-end systems: a structural-oriented review. IEEE Antennas Propag. Mag. 63(5), 72–84 (2020)

    Article  Google Scholar 

  55. S. Saxena, R. Sharma, M.D. Upadhayay, A. Shrivastava, P.K. Mishra, Novel filtenna for wireless applications. Mater. Today Proc. 47, 6953–6959 (2021)

    Article  Google Scholar 

  56. L.I. Daotong, Y.U. Yaqing, M.C. Tang, L.I. Dajiang, M.U. Dongmei, L.I. Mei, Active, compact, wideband, receiving filtenna with power adaptation for space-limited wireless platforms. Chin. J. Aeronaut. 35(8), 7–11 (2022)

    Article  Google Scholar 

  57. S. Chandra, Dual band filtenna design using complementary triangular split ring resonators, in 2021 Innovations in Power and Advanced Computing Technologies (i-PACT). (IEEE, 2021), pp. 1–5

    Google Scholar 

  58. Y.F. Cao, Y. Zhang, X.Y. Zhang, Filtering antennas: from innovative concepts to industrial applications. Front. Inf. Technol. Electron. Eng. 21(1), 116–127 (2020)

    Article  Google Scholar 

  59. C.K. Lin, S.J. Chung, A compact filtering microstrip antenna with quasi-elliptic broadside antenna gain response. IEEE Antennas Wirel. Propag. Lett. 10, 381–384 (2011)

    Article  ADS  Google Scholar 

  60. X. Chen, F. Zhao, L. Yan, W. Zhang, A compact filtering antenna with flat gain response within the passband. IEEE Antennas Wirel. Propag. Lett. 12, 857–860 (2013)

    Article  ADS  Google Scholar 

  61. W.J. Wu, Y.Z. Yin, S.L. Zuo, Z.Y. Zhang, J.J. Xie, A new compact filter-antenna for modern wireless communication systems. IEEE Antennas Wirel. Propag. Lett. 10, 1131–1134 (2011)

    Article  ADS  Google Scholar 

  62. L. Chen, Y.L. Luo, Compact filtering antenna using CRLH resonator and defected ground structure. Electron. Lett. 50(21), 1496–1498 (2014)

    Article  ADS  Google Scholar 

  63. J.B. Jadhav, P.J. Deore, Filtering antenna with radiation and filtering functions for wireless applications. J. Electr. Syst. Inf. Technol. 4(1), 125–134 (2017)

    Article  Google Scholar 

  64. C. Yu, W. Hong, Z. Kuai, H. Wang, Ku-band linearly polarized omnidirectional planar filtenna. IEEE Antennas Wirel. Propag. Lett. 11, 310–313 (2012)

    Article  ADS  Google Scholar 

  65. B. Sahu, S. Singh, M.K. Meshram, S.P. Singh, Integrated design of filtering antenna with high selectivity and improved performance for L-band applications. AEU Int. J. Electron. Commun. 97, 185–194 (2018)

    Article  Google Scholar 

  66. W. Wang, C. Chen, S. Wang, W. Wu, A wideband omnidirectional filtering patch antenna with high selectivity. Int. J. RF Microwave Comput. Aided Eng. 29(3), e21653 (2019)

    Article  Google Scholar 

  67. J. Cui, A. Zhang, S. Yan, Co-design of a filtering antenna based on multilayer structure. Int. J. RF Microwave Comput. Aided Eng. 30(2), e22096 (2020)

    Article  Google Scholar 

  68. W. Wang, J. Ran, N. Hu, W. Xie, Y. Wu, A.A. Kishk, A novel differential filtering patch antenna with high selectivity. Int. J. RF Microwave Comput. Aided Eng. 29(10), e21880 (2019)

    Article  Google Scholar 

  69. A. Khabba, J. Amadid, Z.E. Ouadi, L. Wakrim, S. Ibnyaich, A.J.A. Al-Gburi, A. Zeroual, Micro-sized graphene-based UWB annular ring patch antenna for short-range high-speed terahertz wireless systems, in Recent advances in graphene nanophotonics. (Springer Nature Switzerland, Cham, 2023), pp. 227–247

    Chapter  Google Scholar 

  70. D. Sathish Kumar, S. Pavithra, K.S. Ranjith, R. Kiruthika, E. Kavin, Design and investigation of metamaterial antenna for wireless communication, in 2023 7th International Conference on Electronics, Communication and Aerospace Technology (ICECA). (IEEE, Coimbatore, 2023), pp. 1464–1468. https://doi.org/10.1109/ICECA58529.2023.10395476

    Chapter  Google Scholar 

  71. A. Farhad, J.Y. Pyun, Terahertz meets AI: the state of the art. Sensors 23(11), 5034 (2023)

    Article  ADS  Google Scholar 

  72. O.A. Amodu, C. Jarray, S.A. Busari, M. Othman, THz-enabled UAV communications: motivations, results, applications, challenges, and future considerations. Ad Hoc Netw. 140, 103073 (2023)

    Article  Google Scholar 

  73. H. Elayan, O. Amin, R.M. Shubair, M.S. Alouini, Terahertz communication: the opportunities of wireless technology beyond 5G, in 2018 International Conference on Advanced Communication Technologies and Networking (CommNet). (IEEE, 2018), pp. 1–5

    Google Scholar 

  74. K. Muthukrishnan, M.M. Kamruzzaman, S. Lavadiya, V. Sorathiya, Superlative split ring resonator shaped ultrawideband and high gain 1× 2 MIMO antenna for terahertz communication. Nano Commun. Networks 36, 100437 (2023)

    Article  Google Scholar 

  75. K. Moradi, P. Karimi, An enhanced gain of frequency and polarization reconfigurable graphene antenna in terahertz regime. AEU Int. J. Electron. Commun. 158, 154463 (2023)

    Article  Google Scholar 

  76. M.F. Ali, Z. Jawed, V. Raj, G. Varshney, Terahertz antenna with tunable filtering. Appl. Opt. 62(2), 284–290 (2023)

    Article  ADS  Google Scholar 

  77. Y. Liu, Y.S. Lin, Terahertz metamaterial using reconfigurable H-shaped resonator with tunable perfect absorption characteristic. Mater. Today Commun. 35, 105700 (2023)

    Article  Google Scholar 

  78. A. Saeed, O. Gurbuz, M.A. Akkas, Terahertz communications at various atmospheric altitudes. Phys. Commun. 41, 101113 (2020)

    Article  Google Scholar 

  79. T. Amini, F. Jahangiri, Z. Ameri, M.A. Hemmatian, A review of feasible applications of THz waves in medical diagnostics and treatments. J. Laser Med. Sci. 12 (2021)

  80. B.E. Caroline, K. Sagadevan, S.K. Danasegaran, S. Kumar, Characterization of a pentagonal CSRR bandpass filter for terahertz applications. J. Electron. Mater. 51(9), 5405–5416 (2022)

    Article  ADS  Google Scholar 

  81. F. Razzaz, S.M. Saeed, M.A. Alkanhal, Ultra-wideband bandpass filters using tapered resonators. Appl. Sci. 12(7), 3699 (2022)

    Article  Google Scholar 

  82. S.K. Danasegaran, E.C. Britto, S. Dhanasekaran, G. Rajalakshmi, S. Lalithakumari, A. Sivasangari, G. Sathish Kumar, Design and investigation of line-defected photonic crystal antenna for outstanding data transmission, in Radar and RF front end system designs for wireless systems. ed. by S. Mehta, R. Kumar (IGI Global, 2024), pp. 176–193. https://doi.org/10.4018/979-8-3693-0916-2.ch007

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sagadevan designed the various filters and proposed the original draft. Caroline validated the simulated results and verified the manuscript. Susan provides the concept and supervision, and prepared figures. Sathish Kumar conducted the literature survey, investigation, and methodology. Finally, all authors reviewed and edited the complete manuscript.

Corresponding author

Correspondence to Sagadevan K..

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Britto, E.C., K., S., Xavier, S. et al. Design of Narrowband Terahertz Filtenna for High-Speed Wireless Communication. Braz J Phys 54, 107 (2024). https://doi.org/10.1007/s13538-024-01485-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01485-z

Keywords

Navigation