Skip to main content

Advertisement

Log in

Compact Ultra-Thin Seven-Band Microwave Metamaterial Absorber Based on a Single Resonator Structure

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, we present the design, simulation, measurement and characterization of a seven-band polarization-insensitive and wide-angle metamaterial absorber (MMA) in the microwave frequency region. The unit-cell structure of the designed MMA is composed of a single closed-meander-wire resonator structure placed over a metal ground plane by a dielectric substrate. The simulated results exhibit that the proposed MMA has high-level absorption of over 90% at seven distinct resonance frequencies, which agree reasonably with experiment. Simulated electric field distributions reveal that the observed high-level absorption mainly originates from higher-order electric resonance response. Simulated absorbance under different angles of polarization and oblique incidence indicate that the high absorption of this MMA can be kept stable for both transverse electric and transverse magnetic waves. Furthermore, the influences of geometric parameters of the unit-cell structure on absorption properties of the MMA were also studied numerically. In addition, this proposed MMA has good performances of thinner thickness, polarization-insensitive and wide-angle properties, which has many potential applications such as detection, imaging and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J. Cui, D.R. Smith, and R. Liu, Metamaterials: theory, design and applications (Berlin: Springer, 2010).

    Book  Google Scholar 

  2. H.S. Chen, B.-I. Wu, B.L. Zhang, and A.K. Jin, Phys. Rev. Lett. 99, 063903 (2007).

    Article  Google Scholar 

  3. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).

    Article  Google Scholar 

  4. H.X. Xu, G.M. Wang, M.Q. Qi, Y.Y. Lv, and X. Gao, Appl. Phys. Lett. 102, 193502 (2013).

    Article  Google Scholar 

  5. Y.H. Zhu, S. Vegesna, Y. Zhao, V. Kuryatkov, M. Holtz, Z.Y. Fan, M. Saed, and A.A. Bernussi, Opt. Lett. 38, 2382 (2013).

    Article  Google Scholar 

  6. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).

    Article  Google Scholar 

  7. Y. Jang, M. Yoo, and S. Lim, Opt. Express 21, 24163 (2013).

    Article  Google Scholar 

  8. P. Munaga, S. Ghosh, S. Bhattacharyya, and D. Chaurasiya, in European conference on antennas and propagation, 1 (2005).

  9. O. Akgol, O. Altintas, E.E. Dalkılınc, E. Unal, M. Karaaslan, and C. Sabah, Opt. Eng. 56, 087104 (2017).

    Article  Google Scholar 

  10. T.S. Almoneef and O.M. Ramahi, Appl. Phys. Lett. 106, 153902 (2015).

    Article  Google Scholar 

  11. J.B. Kim, S.K. Lee, and C.G. Kim, Compos. Sci. Technol 68, 2909 (2008).

    Article  Google Scholar 

  12. Y.Z. Cheng, Y. Nie, R.Z. Gong, and H.L. Yang, Eur. Phys. J. Appl. Phys. 56, 31301 (2011).

    Article  Google Scholar 

  13. D. Lim, D.J. Lee, and S.J. Lim, Sci. Rep. 6, 39686 (2016).

    Article  Google Scholar 

  14. Y.Q. Xu, P.H. Zhou, H.B. Zhang, L. Chen, and L.J. Deng, J. Appl. Phys. 110, 044102 (2011).

    Article  Google Scholar 

  15. H.M. Lee and H.S. Lee, Progr. Electromagn. Res. Lett. 33, 112 (2012).

    Article  Google Scholar 

  16. H.Q. Zhai, ZhH Li, L. Li, and Ch.H. Liang, Microw. Opt. Technol. Lett. 55, 1606 (2013).

    Article  Google Scholar 

  17. X.P. Shen, Y. Yang, Y. Zang, J. Gu, and J. Han, Appl. Phys. Lett. 101, 154102 (2012).

    Article  Google Scholar 

  18. Y.Z. Cheng, Y. Nie, and R.Z. Gong, Appl. Phys. B 111, 483 (2013).

    Article  Google Scholar 

  19. T.M. Kollatou, A.I. Dimitriadis, S.D. Assimonis, N.V. Kantartzis, and C.S. Antonopoulos, Appl. Phys. A 115, 555 (2014).

    Article  Google Scholar 

  20. F. Ding, Y.X. Cui, X.C. Ge, F. Zhang, Y. Jin, and S.L. He, Appl. Phy. Lett. 100, 103506 (2012).

    Article  Google Scholar 

  21. B. Ma, S.B. Liu, B.R. Bian, X.K. Kong, H.F. Zhang, Z.W. Mao, and B.Y. Wang, J. Electromagn. Waves Appl. 28, 1478 (2014).

    Article  Google Scholar 

  22. S. Ghosh, S. Bhattacharyya, D. Chaurasiya, and K. Srivastava, IEEE Antennas Wirel. Propag. Lett. 14, 1172 (2015).

    Article  Google Scholar 

  23. M. Agarwal, A.K. Behera, and M.K. Meshram, Electron. Lett. 52, 340 (2016).

    Article  Google Scholar 

  24. M.J. Hossain, M.R.I. Faruque, M.T. Islam, and K.B. Mat, Appl. Sci. 7, 1263 (2017).

    Article  Google Scholar 

  25. G. Dayal and S.A. Ramakrishna, J. Opt. 16, 094016 (2014).

    Article  Google Scholar 

  26. D. Hu, H.Y. Wang, and Q.F. Zhu, IEEE Photonics J. 8, 5500608 (2016).

    Google Scholar 

  27. B.X. Wang, Plasmonics 12, 95 (2017).

    Article  Google Scholar 

  28. Y.Z. Cheng, M.L. Huang, H.R. Chen, Z.Z. Guo, R.Z. Gong, and X.S. Mao, Materials 10, 591 (2017).

    Article  Google Scholar 

  29. Z. Mao, S. Liu, and B. Bian, J. Appl. Phys. 115, 204505 (2014).

    Article  Google Scholar 

  30. N.V. Dung, P.V. Tuong, Y.J.Y. Kim, B.S. Tung, V.D. Lam, J.Y. Rhee, K.W. Kim, Y.H. Kim, and L.Y. Chen, J. Opt. 17, 045105 (2015).

    Article  Google Scholar 

  31. M. Agarwal, A.K. Behera, and M.K. Meshram, Appl. Phys. A 122, 166 (2016).

    Article  Google Scholar 

  32. S.J. Kim, Y.J. Yoo, Y.J. Kim, and Y.P. Lee, Opt. Commun. 382, 151 (2017).

    Article  Google Scholar 

  33. Y.Z. Cheng, Z.Z. Cheng, and X.S. Mao, Materials 10, 1241 (2017).

    Article  Google Scholar 

  34. M.A. Joyal and J.J. Laurin, IEEE Trans. Antennas Propag. 60, 3007 (2012).

    Article  Google Scholar 

  35. P. Fei, Z.X. Shen, X. Wen, and F. Nian, IEEE Trans. Antennas Propag. 63, 4609 (2015).

    Article  Google Scholar 

  36. Y.Z. Cheng, C. Fang, X.S. Mao, R.Z. Gong, and L. Wu, IEEE Photonics J. 8, 1 (2016).

    Google Scholar 

  37. H. Luo and Y.Z. Cheng, J. Electron. Mater. 47, 323 (2018).

    Article  Google Scholar 

  38. Y.Z. Cheng, H.J. Zou, J.J. Yang, X.S. Mao, and R.Z. Gong, Opt. Mater. Express 8, 3104 (2018).

    Article  Google Scholar 

  39. M.L. Huang, Y.Z. Cheng, Z.Z. Cheng, H.R. Chen, X.S. Mao, and R.Z. Gong, Opt. Commun. 415, 194 (2018).

    Article  Google Scholar 

  40. J. Zhou, E.N. Economon, T. Koschny, and C.M. Soukoulis, Opt. Lett. 31, 3620 (2006).

    Article  Google Scholar 

  41. R. Feng, J. Qiu, L.H. Liu, W.Q. Ding, and L.X. Chen, Opt. Express 22, A1713 (2014).

    Article  Google Scholar 

  42. D.W. Yu, P.G. Liu, Y.F. Dong, D.M. Zhou, and Q.H. Zhou, Opt. Commun. 396, 28 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61605147, 61701185, and 61801186), the Natural Science Foundation of Hubei, China (Grant No. 2017CFB588) and the Science and Technology Research Project of Education Department of Hubei, China (Grant No. D20181107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhi Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Zou, Y., Luo, H. et al. Compact Ultra-Thin Seven-Band Microwave Metamaterial Absorber Based on a Single Resonator Structure. J. Electron. Mater. 48, 3939–3946 (2019). https://doi.org/10.1007/s11664-019-07156-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07156-z

Keywords

Navigation