Skip to main content
Log in

Design and Investigation of Photonic Crystal Antenna Performance for Expeditious Data Rate in Wireless Communication

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The current wireless technology adopted 5G (Generation) communication, and more research is analyzed towards 6G too. The switching of various Gs is due to achieving a high data rate speed and effective transmission. The terahertz (THz) band helps achieve a high data transmission rate in Terabit per second (Tbps). This manuscript proposed the THz-based photonic crystal (PhC) antenna and investigated the effect of a line defect. In the PhC triangular substrate, the line defect is implanted in horizontal and vertical directions. The antenna performances like return loss, directivity and voltage standing wave ratio (VSWR) are examined. The simulated results conclude that the horizontally oriented defective PhC antenna provided superior antenna performances than the vertically oriented defective PhC structure. The simulated results of the defected PhC antenna exhibited excellent characteristics like −50.60 dB return loss, 1.00 value of VSWR and directivity of 8.96 dB at 1.58 THz frequency. Hence, the proposed defective PhC antenna is applicable for high-speed wireless transmission in terms of Tbps, various medical applications, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Y.J. Tan, W. Wang, A. Kumar, R. Singh, Interfacial topological photonics: broadband silicon waveguides for THz 6G communication and beyond. Opt. Express 30, 33035–33047 (2022)

  2. A. Kumar, M. Gupta, P. Pitchappa, N. Wang, M. Fujita, R. Singh, Terahertz topological photonic integrated circuits for 6G and beyond: a perspective. J. Appl. Phys. 132(14), 140901 (2022)

  3. A.S. Dhillon, D. Mittala, E. Sidhu, THz rectangular microstrip patch antenna employing polyimide substrate for video rate imaging and homeland defence applications. Optik 144, 634–641 (2017)

  4. M. Naftaly, A.P. Flouds, A.G. Davies, Terahertz transmission spectroscopy of non-polar materials and relationship with composition and properties. Int. J. Infrared Millimeter Waves 26, 55–64 (2005)

    Article  ADS  Google Scholar 

  5. S.K. Danasegaran, E.C. Britto, S. Poonguzhali, Smart gas sensor based on photonic crystal for sensing perilous gases: industrial and mining applications. Energy Sources Part A Recovery Util. Environ. Eff. 44(3), 7564–7572 (2022). https://doi.org/10.1080/15567036.2022.2115583

  6. L.C. Paul, H.K. Saha, T. Rani, M.Z. Mahmud, T.K. Roy, W.S. Lee, An omni-directional wideband patch antenna with parasitic elements for sub-6 GHz band applications. Int. J. Antennas Propag. 2022(9645280), 11 (2022)

  7. H.R. Khaleel, H.M. Al-Rizzo, A.I. Abbosh, Design, fabrication, and testing of flexible antennas, in Advancement in microstrip antennas with recent applications. (IntechOpen, 2013)

  8. S.K. Danasegaran, E.C. Britto, W. Johnson, Investigation of the influence of fluctuation in air hole radii and lattice constant on photonic crystal substrate for terahertz applications. Opt. Eng. 59(08), 087102 (2020). https://doi.org/10.1117/1.OE.59.8.087102

  9. S.K. Ezzulddin, S.O. Hasan, M.M. Ameen, Microstrip patch antenna design, simulation and fabrication for 5G applications. Simul. Model. Pract. Theory 116, 102497 (2022). https://doi.org/10.1016/j.simpat.2022.102497

  10. P. Kaur, S. Bansal, N. Kumar, SRR metamaterial-based broadband patch antenna for wireless communications. J. Eng. Appl. Sci. 69(47) (2022). https://doi.org/10.1186/s44147-022-00103-6

  11. K. Aliqab, S. Lavadiya, M. Alsharari, A. Armghan, M.G. Daher, S.K. Patel, Design and fabrication of a low-cost, multiband and high gain square tooth-enabled metamaterial superstrate microstrip patch antenna. Micromachines 14(163) (2023). https://doi.org/10.3390/mi14010163

  12. D.S. Kumar, B.E. Caroline, S. Thilagavathi, Investigation of equilateral triangular microstrip patch antenna using photonic crystal, in 2020 International Conference on System, Computation, Automation and Networking (ICSCAN). (2020), pp.1–6

  13. M.E. Benlakehal, A. Hocini, D. Khedrouche, M.N. Temmar, T.A. Denidni, I. Shayae I, Design and analysis of a 1 × 2 microstrip patch antenna array based on photonic crystals with a graphene load in THz. J. Opt. (2022). https://doi.org/10.1007/s12596-022-01006-8

  14. M.E. Benlakehal, A. Hocini, D. Khedrouche, M.N. Temmar, T.A. Denidni, Design and analysis of MIMO system for THz communication using terahertz patch antenna array based on photonic crystals with graphene. Opt. Quantum Electron. 54(11), (2022). https://doi.org/10.1007/s11082-022-04081-0

  15. A.S. Priyadharshini, C. Arvind, M. Karthikeyan, Novel ENG metamaterial for gain enhancement of an off-set fed CPW concentric circle shaped patch antenna. Wirel. Pers. Commun. (2023). https://doi.org/10.1007/s11277-023-10390-8

  16. S. Ullah, C. Ruan, T. Haq, X. Zhang, High performance THz patch antenna using photonic band gap and defected ground structure. J. Electromagn. Waves and Appl. 33, 1943–1954 (2019)

    Article  ADS  Google Scholar 

  17. M.L. Povinelli, S.G. Johnson, S. Fan, J.D. Joannopoulos, Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap. Phys. Rev. B 64(7), 1–8 (2021)

  18. M.R. Wu, C.J. Wu, S.J. Chang, Investigation of defect modes in a defective photonic crystal with a semiconductor metamaterial defect. Physica E 64(1), 146–151 (2014)

    Article  ADS  Google Scholar 

  19. L. Yang, X. Shi, K. Chen, K. Fu, B. Zhang, Analysis of photonic crystal and multi-frequency terahertz microstrip patch antenna. Physica B 431(5), 11–14 (2013)

    Article  ADS  Google Scholar 

  20. K. Gamare, R.B. Jain, Performance analysis of 2D photonic crystal with line defect. AIP Conf. Proc. 2166, 020011 (2019)

  21. Z. Liqiang, Z. Chenxi, Y. Sicheng, Z. Zhuoran, G. Daohan, Band gap of silicon photonic crystal with square-lattice and windmill-shaped defects. Res. Phys. 31(4), 1–7 (2021)

  22. K.M. Maliheh, F. Romain, Slow light engineering in resonant photonic crystal line-defect waveguides. Opt. Express 27(18), 26229–26238 (2019)

    Article  ADS  Google Scholar 

  23. M. Joy, A. Kinol, M. Devaerakkam, D. Godwin Immanuel, K.N. Raghavan, G.K. Prince, Design and fabrication of biodegradable antenna using jute material for UWB Application. Adv. Mater. Sci. Eng. 2016737 (2022). https://doi.org/10.1155/2022/2016737

  24. C. Kumar, S.K. Raghuwanshi, V. Kumar, Graphene based microstrip patch antenna on photonic crystal substrate for 5G application. Front. Mater. 9, 1079588 (2022). https://doi.org/10.3389/fmats.2022.1079588

  25. S.K. Patel, J. Sonagara, D. Kartodiya, V. Sorathiya, High gain metamaterial radome design for microstrip based radiating structure. Mater. Res. Express 6(2) (2018). https://doi.org/10.1088/2053-1591/aaed30

  26. M.E. Benlakehal, H. Hocini, D. Khedrouche, M.N. Temmar, T.A. Denidni, Design and analysis of novel microstrip patch antenna array based on photonic crystal in THz. Opt. Quantum Electron. 5 (2022)

  27. F.M. Sousa, F.B. de Sousa, I.R.S. Miranda, J.E. Oliveira, W. Paschoal, M.B.C. Costa, Graphene patch antenna with lateral edges defned by armchair or zigzag structures and PBG substrate. J. Comput Electron. 19, 700–708 (2020)

  28. M.E. Benlakehal, A. Hocini, D. Khedrouche, M.N. Temmar, T.A. Denidni, I. Shayea, Design and analysis of a 1 × 2 microstrip patch antenna array based on photonic crystals with a graphene load in THZ. J. Opt. 52 (2022). https://doi.org/10.1007/s12596-022-01006-8

  29. K. Aliqab, M. Alsharari, V. Sorathiya, A. Armghan, A Numerical investigation of graphene-based hilbert-shaped multi-band MIMO antenna for the terahertz spectrum applications. Sensors (Basel). 23(1), 37 (2022). https://doi.org/10.3390/s23010037

    Article  ADS  Google Scholar 

  30. A.Y. Ashyap, Z.A. Shamsan, M. Inam, M.R. Dahri, K. Almuhanna, F. Alorifi, Multi-band metamaterial antenna for terahertz applications. Comput. Mater. Contin. 74 (2022). https://doi.org/10.32604/cmc.2023.030618

  31. X. Li, W. Yin, S. Khamas, An efficient photomixer based slot fed terahertz dielectric resonator antenna. Sensors 21, 876 (2021)

    Article  ADS  Google Scholar 

  32. J. Abhishek, P. Krishnan, S. Robinson, A design for an ultrafast all-optical full subtractor based on two-dimensional photonic crystals. J. Comput. Electron. 20(2), 433–441 (2021)

    Article  Google Scholar 

  33. A. Kumar, M. Gupta, Pitchappa, P, Wang, N, Szriftgiser, Ducournau, G, Singh, R, Phototunable chip-scale topological photonics: 160 Gbps waveguide and demultiplexer for THz 6G communication. Nat. Commun. 13, 5404 (2022). https://doi.org/10.1038/s41467-022-32909-6

  34. L. Cong, J. Han, W. Zhang et al., Temporal loss boundary engineered photonic cavity. Nat. Commun. 12, 6940 (2021). https://doi.org/10.1038/s41467-021-27014-z

    Article  ADS  Google Scholar 

  35. T.D. Amalraj, S. Robinson, Design and analysis of microstrip antenna on periodic and non-periodic photonic band gap substrate. IETE J. Res. 6(2), 1–10 (2020)

    Google Scholar 

  36. S. Noda, A. Chutinan, M. Imada, Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature 407, 608–610 (2000)

    Article  ADS  Google Scholar 

  37. H. Ouassal, J. Shaker, L. Roy, K. Hettak, R. Chaharmir, Line defect-layered EBG waveguides in dielectric substrates. Int. J. Antenna. Propag. 2018, 3469730 (2018)

  38. J.C. Knight, T.A. Birks, P.J. Russell, J.P. Sandro, Properties of photonic crystal fiber and the effective index model. J. Opt. Soc. Am. 15(3), 748–752 (1998)

    Article  ADS  Google Scholar 

  39. D. Urbonas, A. Balcytis, K. Vaskevicius, M. Gabalis, R. Petruskevicius, Air and dielectric bands photonic crystal microring resonator for refractive index sensing. Opt. Lett. 41(15), 3655–3658 (2016)

    Article  ADS  Google Scholar 

  40. A. Kumar, M. Gupta, P. Pitchappa, Y.J. Tan, N. Wang, R. Singh, Topological sensor on a silicon chip. Appl. Phys. Lett. 121(1), 011101 (2022). https://doi.org/10.1063/5.0097129

  41. A. Kumar, M. Gupta, P. Pitchappa, T.C. Tan, U. Chattopadhyay, G. Ducournau, N. Wang, Y. Chong, R. Singh, Active ultrahigh-Q (0.2 × 106) THz topological cavities on a chip. Adv. Mater. 34, 2202370 (2022). https://doi.org/10.1002/adma.202202370

  42. W. Li, S.W. Zhu, Study the coupling characteristics of line defects and point defects in photonic crystals. Adv. Mater. Res. 834–836, 111–112 (2013)

    Google Scholar 

  43. C.C. Liu, C.C. Wu, Analysis of defect mode in a dielectric photonic crystal containing ITO defect. Optik 125, 7140–7142 (2014)

    Article  ADS  Google Scholar 

  44. V. Cherappa, T. Thangarajan, S.S. Meenakshi Sundaram, F. Hajjej, A.K. Munusamy, R. Shanmugam, Energy-efficient clustering and routing using ASFO and a cross-layer-based expedient routing protocol for wireless sensor networks. Sensors 23(5), 2788 (2023). https://doi.org/10.3390/s23052788

  45. E.C. Britto, S.K. Danasegaran, K. Sagadevan, Performance analysis of SSRR in high-speed terahertz antenna for biomedical applications, in Metamaterial technology and intelligent metasurfaces for wireless communication systems. ed. by S. Mehta, A. Abougreen (IGI Global, 2023), pp.180–199. https://doi.org/10.4018/978-1-6684-8287-2.ch008

  46. E.C. Britto, S.K. Danasegaran, S.C. Xavier, S. Lalithakumari, Investigation of electromagnetic wave propagation in a defected photonic crystal square lattice structure, J. Electron. Mater. (2022). https://doi.org/10.1007/s11664-022-10058-2

  47. R.K. Kushwaha, P. Karuppanan, L. Malviya, Design and analysis of novel microstrip patch antenna on photonic crystal in THz. Phys. B Condens. Matter 545, 107–112 (2018)

    Article  ADS  Google Scholar 

  48. A. Singh, S. Singh, A trapezoidal MPA on photonic crystal substrate for high speed THz applications. Photo. Nanostruct. Fundam. Appl. 14, 52–62 (2015)

    Article  ADS  Google Scholar 

  49. I. Ahmad, S. Ullah, S. Ullah, U. Habib, S. Ahmad, A. Ghaffar, M. Alibakhshikenari, S. Khan, E. Limiti, Design and analysis of a photonic crystal based planar antenna for THz applications. Electronics 10(16), 1941 (2021). https://doi.org/10.3390/electronics10161941

    Article  Google Scholar 

  50. G. Singh, Design considerations for rectangular microstrip patch antenna on electromagnetic crystal substrate at terahertz frequency. Infrared Phys. Technol. 53, 17–22 (2010)

    Article  ADS  Google Scholar 

  51. A. Vahdati, F. Parandin, Antenna patch design using a photonic crystal substrate at a frequency of 1.6 THz. Wirel. Pers. Commun. 109, 2213–2219 (2019). https://doi.org/10.1007/s11277-019-06676-5

Download references

Author information

Authors and Affiliations

Authors

Contributions

Authors Sathish and Poonguzhali drafted the full manuscript and simulated the antenna. Authors Elizabeth and Sagadevan optimized the antenna structure and checked the final version of the manuscript. Authors Paranthaman and Mahendran did the literature survey and drafted the final manuscript.

Corresponding author

Correspondence to Sathish Kumar Danasegaran.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danasegaran, S.K., Britto, E.C., Sagadevan, K. et al. Design and Investigation of Photonic Crystal Antenna Performance for Expeditious Data Rate in Wireless Communication. Braz J Phys 54, 31 (2024). https://doi.org/10.1007/s13538-023-01408-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01408-4

Keywords

Navigation