Skip to main content

Overview of THz Antenna Design Methodologies

  • Chapter
  • First Online:
Advances in Terahertz Technology and Its Applications

Abstract

The potential growth in the domain of wireless communication is boundless. Ultra-high speed with low-latency communications will be the foundation for the next-generation wireless systems. Henceforth, the futuristic massively interconnected wireless system immensely relies on terahertz (THz) spectrum devices. The THz band of frequency ranging between 0.1 and 10 THz will be primarily employed in 6G communication for enabling smart interconnections and high data rates. Due to the inherent characteristics of the THz spectrum, the modularity of the antenna is a miniaturized structure. Atmospheric attenuation and free space path loss of the signals in this spectrum are high due to its wave properties. There are many challenges in developing devices operating in the THz range. To overcome these downsides, the antenna designed for this spectrum must possess high gain and directivity. The conventional method of performance enhancement of antenna incorporate variation in material composition, structure, inclusion of defected ground, Photonic Band Gap (PBG) structure or meta-material superstrate. Only few of these methods will be applicable for THz antenna. The availability of antenna capable of providing ultra-wide band (UWB) capability in THz band will be a major bottleneck in the implementation of 6G wireless system. In recent years, research activities of THz antenna design methodologies have gained momentum due to high potential of the antenna in applications like ultra-fast short-range communication, medical imaging, and remote sensing. This chapter highlights the recent trends and the key breakthroughs in the antenna design in THz spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.Z. Chowdhury, M. Shahjalal, S. Ahmed, Y.M. Jang, 6G wireless communication systems: applications, requirements, technologies, challenges, and research directions. IEEE Open J. Commun. Soc. 1, 957–975 (2020). https://doi.org/10.1109/ojcoms.2020.3010270

    Article  Google Scholar 

  2. Technology Trends of Active Services in the Frequency Range 275–3000 GHz (2015). https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-SM.2352-2015-PDF-E.pdf

  3. I.F. Akyildiz, J.M. Jornet, C. Han, Terahertz band: next frontier for wireless communications. Phys. Commun. 12, 16–32 (2014). https://doi.org/10.1016/j.phycom.2014.01.006

    Article  Google Scholar 

  4. Z. Hajiyat, A. Ismail, A. Sali, M.N. Hamidon, Antenna in 6G wireless communication system: specifications, challenges, and research directions. Optik 231, 166415 (2021). https://doi.org/10.1016/j.ijleo.2021.166415

  5. P. Siegel, Terahertz technology. IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002). https://doi.org/10.1109/22.989974

    Article  ADS  Google Scholar 

  6. N. Horiuchi, Terahertz technology: endless applications. National Photon. 4(3), 140–140 (2010)

    Article  ADS  Google Scholar 

  7. A.M.A. Sabaawi, C.C. Tsimenidis, B.S. Sharif, Planar bowtie nanoarray for THz energy detection. IEEE Trans. Terahertz Sci. Technol. 3(5), 524–531 (2013). https://doi.org/10.1109/tthz.2013.2271833

    Article  ADS  Google Scholar 

  8. Y. Kadoya, THz wave propagation on strip lines: devices, properties, and applications, in 2007 19th International Conference on Applied Electromagnetics and Communications (2007). Published. https://doi.org/10.1109/icecom.2007.4544441

  9. D. Woolard, R. Brown, M. Pepper, M. Kemp, Terahertz frequency sensing and imaging: a time of reckoning future applications. Proc. IEEE 93(10), 1722–1743 (2005). https://doi.org/10.1109/jproc.2005.853539

    Article  Google Scholar 

  10. A. Srithar, K. Ruby, C. Manickam, C. Mekala, Terahertz imaging patch antenna for cancer diagnosis applications. Int. J. Appl. Eng. Res. 10, 15232–15236 (2015)

    Google Scholar 

  11. D. Crawley, C. Longbottom, V.P. Wallace, B. Cole, D. Arnone, M. Pepper, Three-dimensional terahertz pulse imaging of dental tissue. J. Biomed. Opt. 8(2), 303 (2003). https://doi.org/10.1117/1.1559059

    Article  ADS  Google Scholar 

  12. M.V. Hidayat, C. Apriono, Design of 0.312 THz microstrip linear array antenna for breast cancer imaging application, in 2018 International Conference on Signals and Systems (ICSigSys) (IEEE, 2018), pp. 224–228

    Google Scholar 

  13. H. Ben Krid, Z. Houaneb, H. Zairi, Reconfigurable graphene annular ring antenna for medical and imaging applications. Progress Electromagn. Res. M. 89, 53–62 (2020). https://doi.org/10.2528/PIERM19110803

  14. D.F. Plusquellic, K. Siegrist, E.J. Heilweil, O. Esenturk, Applications of terahertz spectroscopy in biosystems. ChemPhysChem 8(17), 2412–2431 (2007)

    Article  Google Scholar 

  15. L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, Z. Yang, et al., The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges. RSC Adv. 9(17), 9354–9363 (2019)

    Google Scholar 

  16. Y.C. Shen, Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review. Int. J. Pharm. 417(1–2), 48–60 (2011)

    Article  Google Scholar 

  17. T. Nagatsuma, Photonic generation of terahertz waves for communications and sensing, in Proceedings of the 2nd International Conference on Telecommunications and Remote Sensing (2013). Published. https://doi.org/10.5220/0004785000430048

  18. K. Tekbıyık, A.R. Ekti, G.K. Kurt, A. Görçin, Terahertz band communication systems: challenges, novelties and standardization efforts. Phys. Commun. 35, 100700 (2019)

    Google Scholar 

  19. J. Li, A. Salandrino, N. Engheta, Shaping light beams in the nanometer scale: a Yagi-Uda nanoantenna in the optical domain. Phys. Rev. B 76(24), 245403 (2007)

    Google Scholar 

  20. I.F. Akyildiz, J.M. Jornet, Realizing ultra-massive MIMO (1024 × 1024) communication in the (0.06–10) terahertz band. Nano Commun. Networks 8, 46–54 (2016)

    Article  Google Scholar 

  21. T. Seki, N. Honma, K. Nishikawa, K. Tsunekawa, Millimeter-wave high-efficiency multilayer parasitic microstrip antenna array on teflon substrate. IEEE Trans. Microw. Theory Tech. 53(6), 2101–2106 (2005)

    Article  ADS  Google Scholar 

  22. K.M. Luk, S.F. Zhou, Y.J. Li et al., A microfabricated low-profile wideband antenna array for terahertz communications. Sci. Rep. 7, 1268 (2017). https://doi.org/10.1038/s41598-017-01276-4

    Article  ADS  Google Scholar 

  23. J.F. Harvey, M.B. Steer, T.S. Rappaport, Exploiting High millimeter wave bands for military communications, applications, and design. IEEE Access 7, 52350–52359 (2019). https://doi.org/10.1109/access.2019.2911675; K. Sengupta, A. Hajimiri, A 0.28 THz power-generation and beam-steering array in CMOS based on distributed active radiators. IEEE J. Solid-State Circ. 47(12), 3013–3031 (2012)

  24. M.C. Kemp, P.F. Taday, B.E. Cole, J.A. Cluff, A.J. Fitzgerald, W.R. Tribe, Terahertz for military and security applications. Int. Soc. Opt. Photon. 44–53 (2003)

    Google Scholar 

  25. S.U. Hwu, K.B. deSilva, C.T. Jih, Terahertz (THz) wireless systems for space applications, in 2013 IEEE Sensors Applications Symposium Proceedings (2013). https://doi.org/10.1109/sas.2013.6493580

  26. M.A.K. Khan, M.I. Ullah, M.A. Alim, High-gain and ultrawide-band graphene patch antenna with photonic crystal covering 96.48% of the terahertz band. Optik 227, 166056 (2021)

    Google Scholar 

  27. K. Anusha, Design techniques for compact microstrip antennas. Int. J. Eng. Adv. Technol. (IJEAT) 8(2S), 388–390 (2018)

    MathSciNet  Google Scholar 

  28. N. Laman, D. Grischkowsky, Terahertz conductivity of thin metal films. Appl. Phys. Lett. 93(5), 051105 (2008)

    Google Scholar 

  29. S. Dittakavi, I. Abdel-Motaleb, Indium tin oxide/barium strontium titanate THz sensor antenna, in NAECON 2018-IEEE National Aerospace and Electronics Conference (IEEE, 2018), pp. 622–625

    Google Scholar 

  30. G. Rosolen, Fabrication of terahertz coupling structures by electron beam lithography. PIERS Online 4(4), 441–444 (2008)

    Article  Google Scholar 

  31. A.A. Abohmra, H.T. Abbas, J.U.R. Kazim, M. Saqib Rabbani, C. Li, A. Alomainy, M. Imran, Q.H. Abbasi, An ultrawideband microfabricated gold-based antenna array for terahertz communication. IEEE Antennas Wirel. Propag. Lett. 1. https://doi.org/10.1109/lawp.2021.3072562

  32. A. Abohmra, H. Abbas, M. Al-Hasan, I.B. Mabrouk, A. Alomainy, M.A. Imran, Q.H. Abbasi, Terahertz antenna array based on a hybrid perovskite structure. IEEE Open J. Antennas Propag. 1, 464–471 (2020)

    Article  Google Scholar 

  33. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Google Scholar 

  34. T.A. Elwi, H.M. Al-Rizzo, D.G. Rucker, E. Dervishi, Z. Li, A.S. Biris, Multi-walled carbon nanotube-based RF antennas. Nanotechnology 21(4), 045301 (2009). https://doi.org/10.1088/0957-4484/21/4/045301

  35. M. Dashti, J.D. Carey, Graphene microstrip patch ultrawide band antennas for THz communications. Adv. Func. Mater. 28(11), 1705925 (2018)

    Article  Google Scholar 

  36. M.A.K. Khan, M.I. Ullah, R. Kabir, M.A. Alim, High-performance graphene patch antenna with superstrate cover for terahertz band application. Plasmonics 15, 1719–1727 (2020)

    Article  Google Scholar 

  37. M.M. Seyedsharbaty, R.A. Sadeghzadeh, Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load. Opt. Quant. Electron. 49(6), 221 (2017)

    Article  Google Scholar 

  38. S. Choi, K. Sarabandi, Performance assessment of bundled carbon nanotube for antenna applications at terahertz frequencies and higher. IEEE Trans. Antennas Propag. 59(3), 802–809 (2010)

    Article  ADS  Google Scholar 

  39. Y.N. Jurn, S.A. Mahmood, I.Q. Habeeb, Performance prediction of bundle double-walled carbon nanotube-composite materials for dipole antennas at terahertz frequency range. Progr. Electromagn. Res. M 88, 179–189 (2020). https://doi.org/10.2528/pierm19101604

    Article  Google Scholar 

  40. Y.J. Yang, B. Wu, Y.T. Zhao, Dual-band beam steering THz antenna using active frequency selective surface based on graphene. EPJ Appl. Metamater. 8, 12 (2021)

    Article  ADS  Google Scholar 

  41. A.A. Althuwayb, M. Alibakhshikenari, B.S. Virdee, H. Benetatos, F. Falcone, E. Limiti, Antenna on chip (AoC) design using metasurface and SIW technologies for THz wireless applications. Electronics 10(9), 1120 (2021)

    Article  Google Scholar 

  42. Y. Luo et al., Graphene-based multi-beam reconfigurable THz antennas. IEEE Access 7, 30802–30808 (2019). https://doi.org/10.1109/ACCESS.2019.2903135

    Article  Google Scholar 

  43. P.P. Tong, D.P. Neikirk, P.E. Young, W.A. Peebles, N.C. Luhmann, D.B. Rutledge, Imaging polarimeter arrays for near-millimeter waves. IEEE Trans. Microw. Theory Tech. 32(5), 507–512 (1984)

    Article  ADS  Google Scholar 

  44. T. Nagatsuma, A. Hirata, Y. Royter, M. Shinagawa, T. Furuta, T. Ishibashi, H. Ito, A 120-GHz integrated photonic transmitter, in International Topical Meeting on Microwave Photonics MWP 2000 (Cat. No. 00EX430) (IEEE, 2000), pp. 225–228

    Google Scholar 

  45. M. Li, X.Q. Lin, J.Y. Chin, R. Liu, T.J. Cui, A novel miniaturized printed planar antenna using split-ring resonator. IEEE Antennas Wirel. Propag. Lett. 7, 629–631 (2008)

    Article  ADS  Google Scholar 

  46. G. Singh, Design considerations for rectangular microstrip patch antenna on electromagnetic crystal substrate at terahertz frequency. Infrared Phys. Technol. 53(1), 17–22 (2010)

    Article  ADS  Google Scholar 

  47. M. Younssi, A. Jaoujal, M.D. Yaccoub, A. El Moussaoui, N. Aknin, Study of a microstrip antenna with and without superstrate for terahertz frequency. Int. J. Innov. Appl. Stud. 2(4), 369–371 (2013)

    Google Scholar 

  48. S. Singhal, Ultrawideband elliptical microstrip antenna for terahertz applications. Microw. Opt. Technol. Lett. 61(10), 2366–2373 (2019). https://doi.org/10.1002/mop.31910

    Article  ADS  Google Scholar 

  49. K. Bhattacharyya, S. Goswami, K. Sarmah, S. Baruah, A linear-scaling technique for designing a THz antenna from a GHz microstrip antenna or slot antenna. Optik 199, 163331 (2019). ISSN 0030-4026. https://doi.org/10.1016/j.ijleo.2019.163331

  50. R. Goyal, D.K. Vishwakarma, Design of a graphene-based patch antenna on glass substrate for high-speed terahertz communications. Microw. Opt. Technol. Lett. 60(7), 1594–1600 (2018)

    Article  Google Scholar 

  51. T. Zhou, Z. Cheng, H. Zhang, M.L. Berre, L. Militaru, F. Calmon, Miniaturized tunable terahertz antenna based on graphene. Microw. Opt Technol. Lett. 56(8), 1792–1794 (2014)

    Article  Google Scholar 

  52. A. Devapriya, S. Robinson, Investigation on metamaterial antenna for terahertz applications. J. Microw. Optoelectron. Electromagn. Appl. 18, 377–389 (2019). https://doi.org/10.1590/2179-10742019v18i31577

    Article  Google Scholar 

  53. D.A. Sehrai, M. Abdullah, A. Altaf, S.H. Kiani, F. Muhammad, M. Tufail, S. Rahman, A novel high gain wideband MIMO antenna for 5G millimeter wave applications. Electronics 9(6), 1031 (2020)

    Google Scholar 

  54. K.K. Farzad, D.Z. Yasaman, High-gain multi-layer antenna using metasurface for application in terahertz communication systems. Int. J. Electron. Dev. Phys. 4(1). https://doi.org/10.35840/2631-5041/1707

  55. U.S Keshwala, S. Rawat, K. Ray, Plant shaped antenna with trigonometric half sine tapered leaves for THz applications. Optik 223, 165648 (2020). ISSN 0030-4026. https://doi.org/10.1016/j.ijleo.2020

  56. U. Keshwala, S. Rawat, K. Ray, Inverted K-shaped antenna with partial ground for THz applications. Optik 219, 165092 (2020)

    Google Scholar 

  57. R. Cicchetti, E. Miozzi, O. Testa, Wideband and UWB antennas for wireless applications: a comprehensive review. Int. J. Antennas Propag. (2017)

    Google Scholar 

  58. H. Mao, L. Xia, X. Rao, H. Cui, S. Wang, Y. Deng, D. Wei, J. Shen, H. Xu, C. Du, A terahertz polarizer based on multilayer metal grating filled in polyimide film. IEEE Photon. J. 8(1), 1–6 (2016). https://doi.org/10.1109/jphot.2015.2511093

    Article  Google Scholar 

  59. B. Zhang, W. Chen, Y. Wu, K. Ding, R. Li, Review of 3D printed millimeter-wave and terahertz passive devices. Int. J. Antennas Propag. (2017)

    Google Scholar 

  60. V.M. Lubecke, K. Mizuno, G.M. Rebeiz, Micromachining for terahertz applications. IEEE Trans. Microw. Theory Tech. 46(11), 1821–1831 (1998)

    Article  ADS  Google Scholar 

  61. L. Guo, H. Meng, L. Zhang, J. Ge, Design of MEMS on-chip helical antenna for THz application, in 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP) (IEEE, 2016), pp. 1–4

    Google Scholar 

  62. T.J. Reck, C. Jung-Kubiak, J. Gill, G. Chattopadhyay, Measurement of silicon micromachined waveguide components at 500–750 GHz. IEEE Trans. Terahertz Sci. Technol. 4(1), 33–38 (2014). https://doi.org/10.1109/tthz.2013.2282534

    Article  ADS  Google Scholar 

  63. Z. Popovic, E.N. Grossman, THz metrology and instrumentation. IEEE Trans. Terahertz Sci. Technol. 1(1), 133–144 (2011). https://doi.org/10.1109/TTHZ.2011.2159553

    Article  ADS  Google Scholar 

  64. R. Shan, Y. Yao, J. Yu, X. Chen, Design of tri-reflector compact antenna test range for THz antenna measurement, in 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT) (2012). https://doi.org/10.1109/icmmt.2012.6230080

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Anusha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anusha, K., Mohana Geetha, D., Amsaveni, A. (2021). Overview of THz Antenna Design Methodologies. In: Das, S., Anveshkumar, N., Dutta, J., Biswas, A. (eds) Advances in Terahertz Technology and Its Applications. Springer, Singapore. https://doi.org/10.1007/978-981-16-5731-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5731-3_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5730-6

  • Online ISBN: 978-981-16-5731-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics