Skip to main content

Advertisement

Log in

Laser Wakefield Effect: A Comparative Study of Gaussian and Sinh-Gaussian Pulse Characteristics

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The laser wakefield acceleration (LWFA) is a highly significant phenomenon within the realm of high-energy physics and the study of interactions between lasers and plasmas. This research is aimed at conducting a thorough comparative analysis of two distinct pulse shapes, namely, Gaussian and sinh-Gaussian, in order to examine their individual effects on the production and propagation of wakefield in plasma. The research utilizes analytical techniques to evaluate the wake potential, wakefield, and electron energy gain that are produced. The research findings demonstrate that the selection of pulse form has a substantial impact on the development of wakefield and their corresponding characteristics. The utilization of a sinh-Gaussian pulse with a greater decentered parameter (b = 2) is deemed highly appropriate for the purpose of wakefield creation and the subsequent augmentation of electron energy. It provides valuable insights for researchers who are interested in fully utilizing laser-driven plasma wakefield for a variety of applications, including high-energy particle accelerators and compact radiation sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. J. Krall, A. Ting, E. Esarey, P. Sprangle, Enhanced acceleration in a self-modulated-laser wake-field accelerator. Phys. Rev. E 48(3), 2157–2161 (1993)

    Article  ADS  Google Scholar 

  2. C.B. Schroeder et al., Frequency chirp and pulse shape effects in self-modulated laser wakefield accelerators. Phys. Plasmas 10(5), 2039–2046 (2003)

    Article  ADS  Google Scholar 

  3. V. Thakur, N. Kant, Combined effect of chirp and exponential density ramp on relativistic self-focusing of Hermite-Cosine-Gaussian laser in collisionless cold quantum plasma. Braz. J. Phys. 49(1), 113–118 (2019)

    Article  ADS  Google Scholar 

  4. E. Esarey, P. Sprangle, J. Krall, A. Ting, Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quantum Electron. 33(11), 1879–1914 (1997)

    Article  ADS  Google Scholar 

  5. A.F. Gibson, Laser-driven fusion. Phys. Educ. 15(1), 001 (1980)

    Article  ADS  Google Scholar 

  6. K.F. Long, Interstellar propulsion using laser-driven inertial confinement fusion physics. Universe 8(8), 421 (2022)

    Article  ADS  Google Scholar 

  7. V. Sharma, S. Kumar, To study the effect of laser frequency-chirp on trapped electrons in laser wakefield acceleration. J. Phys. Conf. Ser. 2267(1), 012097 (2022)

    Article  Google Scholar 

  8. A.E. Hussein et al., Towards the optimisation of direct laser acceleration. New J. Phys. 23(2), 023031 (2021)

    Article  ADS  Google Scholar 

  9. V. Sharma, V. Thakur, A comprehensive study of magnetic field-induced modifications in sin-Gaussian pulse-driven laser wakefield acceleration. J. Opt. (2024). https://doi.org/10.1007/s12596-023-01636-6

  10. V. Sharma, V. Thakur, Enhanced laser wakefield acceleration utilizing Hermite–Gaussian laser pulses in homogeneous plasma. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01565-4

  11. S.S. Harilal, M.C. Phillips, D.H. Froula, K.K. Anoop, R.C. Issac, F.N. Beg, Optical diagnostics of laser-produced plasmas. Rev. Mod. Phys. 94(3), 035002 (2022)

    Article  ADS  Google Scholar 

  12. V. Fedyuk et al., Multiplexed, single-molecule, epigenetic analysis of plasma-isolated nucleosomes for cancer diagnostics. Nat. Biotechnol. 41(2), 212–221 (2023)

    Article  Google Scholar 

  13. V. Thakur, N. Kant, Resonant second harmonic generation in plasma under exponential density ramp profile. Optik (Stuttg) 168, 159–164 (2018)

    Article  ADS  Google Scholar 

  14. V. Thakur, N. Kant, Optimization of wiggler wave number for density transition based second harmonic generation in laser plasma interaction. Optik (Stuttg) 142, 455–462 (2017)

    Article  ADS  Google Scholar 

  15. V. Thakur, N. Kant, Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma. Front. Phys. (Beijing) 11(4), 115202 (2016)

    Article  ADS  Google Scholar 

  16. M.J. Basiry, M. Sharifian, M. Hashemzadeh, M. Borhani, H. Alirezaie, Influence of rippled density and laser profile on third harmonic generation using cosh‐ Gaussian laser pulses in inhomogeneous magnetized plasmas. Contrib. Plasma Phys. (2023). https://doi.org/10.1002/ctpp.202200196

  17. V. Thakur, S. Vij, V. Sharma, N. Kant, Influence of exponential density ramp on second harmonic generation by a short pulse laser in magnetized plasma. Optik (Stuttg) 171, 523–528 (2018)

    Article  ADS  Google Scholar 

  18. S. Sohrabi, S. Jelvani, K. Samavati, L. Farhang Matin, Effect of chirp parameter on the second harmonic efficiency in relativistic super-Gaussian laser-plasma interaction. Opt. Quantum Electron. 55(11), 942 (2023)

    Article  Google Scholar 

  19. H.K. Midha, V. Sharma, N. Kant, V. Thakur, Resonant Terahertz radiation by p-polarised chirped laser in hot plasma with slanting density modulation. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01563-6

  20. H.K. Midha, V. Sharma, N. Kant, V. Thakur, Efficient THz generation by Hermite-cosh-Gaussian lasers in plasma with slanting density modulation. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01413-5

  21. C. Tailliez, X. Davoine, A. Debayle, L. Gremillet, L. Bergé, Terahertz pulse generation by strongly magnetized, laser-created plasmas. Phys. Rev. Lett. 128(17), 174802 (2022)

    Article  ADS  Google Scholar 

  22. A.A. Frolov, Terahertz radiation in the interaction of a focused laser pulse with plasma. J. Plasma Phys. 89(1), 905890107 (2023)

    Article  Google Scholar 

  23. V. Sharma, S. Kumar, N. Kant, V. Thakur, Excitation of the laser wakefield by asymmetric chirped laser pulse in under dense plasma. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01326-3

  24. H.K. Malik, S. Kumar, Y. Nishida, Electron acceleration by laser produced wake field: pulse shape effect. Opt. Commun. 280(2), 417–423 (2007)

    Article  ADS  Google Scholar 

  25. R. Fallah, S.M. Khorashadizadeh, Influence of Gaussian, super-Gaussian, and cosine-Gaussian pulse properties on the electron acceleration in a homogeneous plasma. IEEE Trans. Plasma Sci. 46(6), 2085–2090 (2018)

    Article  ADS  Google Scholar 

  26. V. Sharma, V. Thakur, N. Kant, Second harmonic generation of cosh-Gaussian laser beam in magnetized plasma. Opt. Quantum Electron. 52(10), 444 (2020)

    Article  Google Scholar 

  27. R. Fallah, S.M. Khorashadizadeh, Electron acceleration in a homogeneous plasma by Bessel-Gaussian and Gaussian pulses. Contrib. Plasma Phys. 58(9), 878–889 (2018)

    Article  ADS  Google Scholar 

  28. P. Kad, V. Rana, A. Singh, Dynamics of Hermite-Gaussian laser beam in plasma and terahertz generation. Optik (Stuttg) 274, 170498 (2023)

    Article  ADS  Google Scholar 

  29. P. Kad, A. Singh, Electron acceleration and spatio-temporal variation of Laguerre-Gaussian laser pulse in relativistic plasma. Eur. Phys. J. Plus 137(8), 885 (2022)

    Article  Google Scholar 

  30. Y. Miao et al., Focal pattern evolution of radially polarized Lorentz-Gaussian vortex beam. Optik (Stuttg) 128, 201–206 (2017)

    Article  ADS  Google Scholar 

  31. S. Ghavami Sabouri, M. Soltanolkotabi, S. Sadat Hashemi, A study of propagation of cosh-squared-Gaussian beam through fractional Fourier transform systems High power SHG View project A study of propagation of cosh-squared-Gaussian beam through fractional Fourier transform systems. (2011). https://www.researchgate.net/publication/228521649

  32. M. Hashemzadeh, Terahertz radiation generation by Hermite-cosh Gaussian and hollow Gaussian laser beams in magnetized inhomogeneous plasmas. Braz. J. Phys. 53(2), 46 (2023)

    Article  ADS  Google Scholar 

  33. V. Sharma, S. Kumar, N. Kant, V. Thakur, Enhanced laser wakefield acceleration by a circularly polarized laser pulse in obliquely magnetized under-dense plasma. Opt. Quantum Electron. 55(13), 1150 (2023)

    Article  Google Scholar 

  34. V. Sharma, S. Kumar, N. Kant, V. Thakur, Effect of frequency chirp and pulse length on laser wakefield excitation in under-dense plasma. Braz. J. Phys. 53(6), 157 (2023)

    Article  ADS  Google Scholar 

  35. V. Sharma, S. Kumar, N. Kant, V. Thakur, Effect of wiggler magnetic field on wakefield excitation and electron energy gain in laser wakefield acceleration. Zeitschrift für Naturforschung A. (2023). https://doi.org/10.1515/zna-2023-0238

  36. V. Sharma, N. Kant, V. Thakur, Effect of different Gaussian-like laser profiles on electron energy gain in laser wakefield acceleration. Opt Quantum Electron 56(1), 45 (2024)

    Article  Google Scholar 

  37. V. Sharma, N. Kant, V. Thakur, Electron acceleration in collisionless plasma: comparative analysis of laser wakefield acceleration using Gaussian and cosh-squared-Gaussian laser pulses. J. Opt. (2024). https://doi.org/10.1007/s12596-023-01564-5

  38. V. Sharma, N. Kant, V. Thakur, Exploring sin-Gaussian laser pulses for efficient electron acceleration in plasma. Opt. Quantum Electron. 56(4), 601 (2024)

    Article  Google Scholar 

  39. V. Sharma, V. Thakur, Lasers wakefield acceleration in underdense plasma with ripple plasma density profile. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01548-5

  40. Q. Sun, K. Zhou, G. Fang, G. Zhang, Z. Liu, S. Liu, Hollow sinh-Gaussian beams and their paraxial properties. Opt. Express 20(9), 9682 (2012)

    Article  ADS  Google Scholar 

  41. B. Tang, S. Jiang, C. Jiang, H. Zhu, Propagation properties of hollow sinh-Gaussian beams through fractional Fourier transform optical systems. Opt. Laser Technol. 59, 116–122 (2014)

    Article  ADS  Google Scholar 

  42. S. Konar, S. Jana, Linear and nonlinear propagation of sinh-Gaussian pulses in dispersive media possessing Kerr nonlinearity. Opt. Commun. 236(1–3), 7–20 (2004)

    Article  ADS  Google Scholar 

  43. J.-Q. Liu, H. Wang, Z.-G. Pang, Z.-J. Yang, Propagation and transformation properties of rotating sinh-Gaussian beam in nonlinear media with spatial nonlocality. Optik (Stuttg) 250, 168249 (2022)

    Article  ADS  Google Scholar 

  44. V. Sharma, S. Kumar, N. Kant, V. Thakur, Enhanced laser wakefield by beating of two co-propagating Gaussian laser pulses. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01250-6

  45. R. Fallah, S.M. Khorashadizadeh, Electron acceleration by Bessel-Gaussian laser pulse in a plasma in the presence of an external magnetic field. High Energy Density Phys. 31, 5–12 (2019)

    Article  ADS  Google Scholar 

  46. M. Abedi-Varaki, M.E. Daraei, Impact of wiggler magnetic field on wakefield generation and electron acceleration by Gaussian, super-Gaussian and Bessel-Gaussian laser pulses propagating in collisionless plasma. J. Plasma Phys. 89(1), 905890114 (2023)

    Article  Google Scholar 

  47. M. Abedi-Varaki, N. Kant, Magnetic field-assisted wakefield generation and electron acceleration by Gaussian and super-Gaussian laser pulses in plasma. Mod. Phys. Lett. B 36(07) (2022). https://doi.org/10.1142/S0217984921506041

  48. N.H. Mohammed, N.E. Cho, E.A. Adegani, T. Bulboaca, Geometric properties of normalized imaginary error function. Studia Universitatis Babes-Bolyai Matematica 67(2), 455–462 (2022)

    Article  MathSciNet  Google Scholar 

  49. G. Purohit, B. Gaur, A. Raizada, P. Kothiyal, Electron acceleration by a cosh-Gaussian laser beam driven electron plasma wave: extended paraxial theory. Opt. Quantum Electron. 53(10), 592 (2021)

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Vivek Sharma: derivation, methodology, analytical modeling, and graph plotting; Niti Kant: numerical analysis and result discussion; Vishal Thakur: supervision, reviewing, and editing.

Corresponding author

Correspondence to Vishal Thakur.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Kant, N. & Thakur, V. Laser Wakefield Effect: A Comparative Study of Gaussian and Sinh-Gaussian Pulse Characteristics. Braz J Phys 54, 68 (2024). https://doi.org/10.1007/s13538-024-01447-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01447-5

Keywords

Navigation