Skip to main content

Advertisement

Log in

Inositol-C2-PAF acts as a biological response modifier and antagonizes cancer-relevant processes in mammary carcinoma cells

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Previous studies have identified alkyl-phospholipids as promising compounds for cancer therapy by targeting constituents of the cell membrane and different signaling pathways. We previously showed that the alkylphospholipid Inositol-C2-PAF inhibits the proliferation and migration of immortalized keratinocytes and the squamous carcinoma-derived cell line SCC-25. Here, we investigated the effect of this compound on growth and motility as well as its mode of action in mammary carcinoma-derived cell lines.

Methods

Using BrdU incorporation and haptotactic cell migration assays, we assessed the effects of Inositol-C2-PAF on MCF-7 and MBA-MB-231 cell proliferation and migration. The phosphorylation status of signaling molecules was investigated by Western blotting as well as indirect immunofluorescence analysis and capillary isoelectric focusing.

Results

We found that Inositol-C2-PAF inhibited the growth as well as the migration in MCF-7 and MBA-MB-231 cells. Furthermore, we found that this compound inhibited phosphorylation of the protein kinase Akt at serine residue 473, but had no impact on phosphorylation at threonine 308. Phosphorylation of other kinases, such as Erk1/2, FAK and Src, which are targeted by Inositol-C2-PAF in other cells, remained unaffected by the compound in the mammary carcinoma-derived cell lines tested. In MCF-7 cells, we found that IGF-1-induced growth, as well as phosphorylation of AktS473, mTOR and the tumor suppressor pRB, was inhibited in the presence of Inositol-C2-PAF. Moreover, we found that in these cells IGF-1 had no impact on migration and did not seem to be linked to full Akt activity. Therefore, MCF-7 cell migration appears to be inhibited by Ino-C2-PAF in an Akt-independent manner.

Conclusion

The antagonistic effects of Inositol-C2-PAF on cell migration and proliferation are indicative for its potential for breast cancer therapy, alone or in combination with other cytostatic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward, D. Forman, Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011)

    Article  PubMed  Google Scholar 

  2. N.U. Lin, E.P. Winer, New targets for therapy in breast cancer: Small molecules tyrosine kinase inhibitors. Breast Cancer Res. 6, 204–210 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. R.J. Weil, D.C. Palmieri, J.L. Bronder, A.M. Stark, P.S. Steeg, Breast cancer metastasis to the central nervous system. Am. J. Pathol. 167, 913–920 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. N.P. Gunasinghe, A. Wells, E.W. Thompson, H.J. Hugo, Mesenchymal-epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer. Cancer Metastasis Rev. 31, 469–478 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. M. Yousefi, R. Nosrati, A. Salmaninejad, S. Dehghani, A. Shahryari, A. Saberi, Organ-specific metastasis of breast cancer: Molecular and cellular mechanisms underlying lung metastasis. Cell. Oncol. 41, 123–140 (2018)

    Article  CAS  Google Scholar 

  6. C. von Haefen, J. Wendt, .G Semini, M. Sifringer, C. Belka, S. Radetzki, W. Reutter, P.T. Daniel, K. Danker, Synthetic glycosidated phospholipids induce apoptosis through activation of FADD, caspase-8 and the mitochondrial death pathway. Apoptosis 16, 636–651 (2011)

    Article  CAS  Google Scholar 

  7. G. Semini, A. Hildmann, H.U. Reissig, W. Reutter, K. Danker, The novel synthetic ether lipid inositol-C2-PAF inhibits phosphorylation of the tyrosine kinases Src and FAK independent of integrin activation in transformed skin cells. Biochem. Pharmacol. 15, 985–995 (2011a)

    Article  CAS  Google Scholar 

  8. A. Fischer, D. Müller, M. Zimmermann-Kordmann, B. Kleuser, M. Mickeleit, S. Laabs, W. Löwe, F. Cantagrel, W. Reutter, K. Danker, The ether lipid inositol-C2-PAF is a potent inhibitor of cell proliferation in HaCaT cells. Chembiochem 7, 441–449 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. S. Forkel, M. Schön, A. Hildmann, A. Claßen, S.M. John, K. Danker, M.P. Schön, Inositoylated platelet activating factor (Ino-C2-PAF) modulates dynamic lymphocyte-endothelial cell interactions and alleviates psoriasis-like skin inflammation in two complementary mouse models. J. Invest. Dermatol. 134, 2510–2520 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. G. Semini, A. Klein, K. Danker, Impact of alkylphospholipids on the gene expression profile of HaCaT cells. Pharmacogenet. Genomics 21, 375–387 (2011b)

    Article  CAS  PubMed  Google Scholar 

  11. G. Semini, A. Hildmann, A. Klein, L. Lucka, M. Schön, M.P. Schön, V. Shmanai, K. Danker, Inositol-C2-PAF down-regulates components of the antigen presentation machinery in a 2D-model of epidermal inflammation. Biochem. Pharmacol. 87, 477–488 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. D.R. Emlet, R. Schwartz, K.A. Brown, A.A. Pollice, C.A. Smith, S.E. Shackney, HER2 expression as a potential marker for response to therapy targeted to the EGFR. British J. Cancer 94, 1144–1153 (2006)

    Article  CAS  Google Scholar 

  13. B. Gottschalk, A. Klein, Restoration of wild-type p53 in drug-resistant mouse breast cancer cells leads to differential gene expression, but is not sufficient to overcome the malignant phenotype. Mol. Cell. Biochem. 379, 213–227 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. S. Schrötter, G. Leondaritis, B.J. Eickholt, Capillary isoelectric focusing of Akt isoforms identifies highly dynamic phosphorylation in neuronal cells and brain tissue. J. Biol. Chem. 291, 10239–10251 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A.L. Lark, C.A. Livasy, L. Dressler, D.T. Moore, R.C. Millikan, J. Geradts, M. Iacocca, D. Cowan, D. Little, R.J. Craven, W. Cance, High focal adhesion kinase expression in invasive breast carcinoma is associated with an aggressive phenotype. Mod. Pathol. 18, 1289–1294 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. E.L. Mayer, I.E. Krop, Advances in targeting SRC in the treatment of breast cancer and other solid malignancies. Clin. Cancer. Res. 16, 3526–3532 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. A. Carnero, C. Blanco-Aparicio, O. Renner, W. Link, J.F. Leal, The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr. Cancer Drug Targets 8, 187–198 (2008)

    Article  CAS  PubMed  Google Scholar 

  18. S. Sarkissyan, M. Sarkissyan, Y. Wu, J. Cardenas, H.P. Koeffler, J.V. Vadgama, IGF-1 regulates Cyr61 induced breast cancer cell proliferation and invasion. PLoS One 9, e103534 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. T.T. Rajah, K.J. Peine, N. Du, C.A. Serret, N.R. Drews, Physiological concentrations of genistein and 17β-estradiol inhibit MDA-MB-231 breast cancer cell growth by increasing BAX/BCL-2 and reducing pERK1/2. Anticancer Res. 32, 1181–1191 (2012)

    PubMed  CAS  Google Scholar 

  20. L.A. Walsh, S. Damjanovski, IGF-1 increases invasive potential of MCF7 breast cancer cells and induces activation of latent TGF-β1 resulting in epithelial to mesenchymal transition. Cell Commun. Signal. 9, 10–21 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. P.T. Bhaskar, N. Hay, The two TORCs and Akt. Dev. Cell 12, 487–502 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. W.J. van Blitterswijk, M. Verheij, Anticancer mechanisms and clinical application of alkylphospholipids. Biochim. Biophys. Acta 1831, 663–674 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. C. Gajate, F. Mollinedo, Lipid rafts, endoplasmic reticulum and mitochondria in the antitumor action of the alkylphospholipid analog edelfosine. Anti Cancer Agents Med. Chem. 14, 509–527 (2014)

    Article  CAS  Google Scholar 

  24. S. Melo-Lima, M.C. Lopes, F. Mollinedo, ERK1/2 acts as a switch between necrotic and apoptotic cell death in ether phospholipid edelfosine-treated glioblastoma cells. Pharmacol. Res. 95-96, 2–11 (2015)

    Article  CAS  PubMed  Google Scholar 

  25. F. Mollinedo, J. de la Iglesia-Vicente, C. Gajate, A. Estella-Hermoso de Mendoza, J.A. Villa-Pulgarin, M.A. Campanero, M.J. Blanco-Prieto, Lipid raft-targeted therapy in multiple myeloma. Oncogene 29, 3748–3757 (2010)

    Article  CAS  PubMed  Google Scholar 

  26. C. Gajate, F. Mollinedo, Lipid raft-mediated Fas/CD95 apoptotic signaling in leukemic cells and normal leukocytes and therapeutic implications. J. Leukoc. Biol. 98, 739–759 (2015)

    Article  CAS  PubMed  Google Scholar 

  27. Verheij, W.H. Moolenaar, W.J. van Blitterswijk, Combining anti-tumor alkyl-phospholipid analogs and radiotherapy: Rationale and clinical outlook. Anti Cancer Agents Med. Chem. 14, 618–628 (2014)

    Article  CAS  Google Scholar 

  28. K. Danker, W. Reutter, G. Semini, Glycosidated phospholipids: Uncoupling of signalling pathways at the plasma membrane. Br. J. Pharmacol. 160, 36–47 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. X. Lin, X. Zhang, Q. Wang, J. Li, P. Zhang, M. Zhao, X. Li, Perifosine downregulates MDR1 gene expression and reverses multidrug-resistant phenotype by inhibiting PI3K/Akt/NF-κB signaling pathway in a human breast cancer cell line. Neoplasma 59, 248–256 (2012)

    Article  CAS  PubMed  Google Scholar 

  30. M.M. Alam, E.H. Joh, Y. Kim, Y.I. Oh, J. Hong, B. Kim, D.H. Kim, Y.S. Lee, Synthesis and biological evaluation of cyclopentane-linked alkyl phosphocholines as potential anticancer agents that act by inhibiting Akt phosphorylation. Eur. J. Med. Chem. 247, 485–492 (2012)

    Article  CAS  Google Scholar 

  31. M.Á. Aznar, B. Lasa-Saracíbar, A. Estella-Hermoso de Mendoza, M.J. Blanco-Prieto, Efficacy of edelfosine lipid nanoparticles in breast cancer cells. Int. J. Pharm. 454, 720–726 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. R.G. Bagley, L. Kurtzberg, C. Rouleau, M. Yao, B.A. Teicher, Erufosine, an alkylphosphocholine, with differential toxicity to human cancer cells and bone marrow cells. Cancer Chemother. Pharmacol. 68, 1537–1546 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. M. Potier, A. Chantome, V. Joulin, A. Girault, S. Roger, P. Besson, M.L. Jourdan, J.Y. LeGuennec, P. Bougnoux, C. Vandier, The SK3/KCa2.3. Potassium channel is a new cellular target for edelfosine. Br. J. Pharmacol. 162, 464–479 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. Chantôme, M. Potier-Cartereau, L. Clarysse, G. Fromont, S. Marionneau-Lambot, M. Guéguinou, J.C. Pagès, C. Collin, T. Oullier, A. Girault, F. Arbion, J.P. Haelters, P.A. Jaffrès, M. Pinault, P. Besson, V. Joulin, P. Bougnoux, C. Vandier, Pivotal role of the lipid raft SK3-Orai1 complex in human cancer cell migration and bone metastases. Cancer Res. 73, 4852–4861 (2013)

    Article  CAS  PubMed  Google Scholar 

  35. P.A. Jaffrès, C. Gajate, A.M. Bouchet, H. Couthon-Gourvès, A. Chantôme, M. Potier-Cartereau, P. Besson, P. Bougnoux, F. Mollinedo, C. Vandier, Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy. Pharmacol. Ther. 165, 114–131 (2016)

    Article  CAS  PubMed  Google Scholar 

  36. T. Bartolmäs, T. Heyn, M. Mickeleit, A. Fischer, W. Reutter, K. Danker, Glucosamine-glycerophospholipids that activate cell-matrix adhesion and migration. J. Med. Chem. 48, 6750–6755 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. D.C. Schallier, E.A. Bruyneel, G.A. Storme, P. Hilgard, M.M. Mareel, Antiinvasive activity of hexadecylphosphocholine in vitro. Anticancer Res. 11, 1285–1292 (1991)

    PubMed  CAS  Google Scholar 

  38. J.W. Slaton, J.A. Hampton, S.H. Selman, Exposure to alkyllysophospholipids inhibits in vitro invasion of transitional cell carcinoma. J. Urol. 152, 1594–1598 (1994)

    Article  CAS  PubMed  Google Scholar 

  39. A. Girault, J.P. Haelters, M. Potier-Cartereau, A. Chantôme, M. Pinault, S. Marionneau-Lambot, T. Oullier, G. Simon, H. Couthon-Gourvès, P.A. Jaffrès, B. Corbel, P. Bougnoux, V. Joulin, C. Vandier, New alkyl-lipid blockers of SK3 channels reduce cancer cell migration and occurrence of metastasis. Curr. Cancer Drug Targets 11, 1111–1125 (2011)

    Article  CAS  PubMed  Google Scholar 

  40. E.A. Bruyneel, J.G. Bolscher, L.A. Smets, M. De Mets, M.M. Mareel, Restored invasion of mouse MO4 cells into chick heart in vitro through mutual conditioning at reduced temperature. Clin. Exp. Metastasis 7, 361–371 (1989)

    Article  CAS  PubMed  Google Scholar 

  41. W.F. Steelant, J.L. Goeman, J. Philippé, L.C. Oomen, J. Hilkens, M.A. Krzewinski-Recchi, G. Huet, J. Van der Eycken, P. Delannoy, E.A. Bruyneel, M.M. Mareel, Alkyl-lysophospholipid 1-O-octadecyl-2-O-methyl-glycerophosphocholine induces invasion through episialin-mediated neutralization of E-cadherin in human mammary MCF-7 cells in vitro. Int. J. Cancer 92, 527–536 (2001)

    Article  CAS  PubMed  Google Scholar 

  42. S. van Slambrouck, W.F. Steelant, Clustering of monosialyl-Gb5 initiates downstream signalling events leading to invasion of MCF-7 breast cancer cells. Biochem. J. 401, 689–699 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. S.R. Vink, J.H. Schellens, W.J. van Blitterswijk, M. Verheij, Tumor and normal tissue pharmacokinetics of perifosine, an oral anti-cancer alkylphospholipid. Investig. New Drugs 23, 279–286 (2005)

    Article  CAS  Google Scholar 

  44. A. Estella-Hermoso de Mendoza, V. Préat, F. Mollinedo, M.J. Blanco-Prieto, In vitro and in vivo efficacy of edelfosine-loaded lipid nanoparticles against glioma. J. Control. Release 156, 421–426 (2011)

    Article  CAS  PubMed  Google Scholar 

  45. G.A. Ruiter, S.F. Zerp, H. Bartelink, W.J. van Blitterswijk, M. Verheij, Anti-cancer alkyl-lysophospholipids inhibit the phosphatidylinositol 3-kinase-Akt/PKB survival pathway. Anti-Cancer Drugs 14, 167–173 (2003)

    Article  CAS  PubMed  Google Scholar 

  46. E.J. Meuillet, Novel inhibitors of AKT: Assessment of a different approach targeting the pleckstrin homology domain. Curr. Med. Chem. 18, 2727–2742 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. M.E. Feldman, K.M. Shokat, New inhibitors of the PI3K-Akt-mTOR pathway: Insights into mTOR signaling from a new generation of Tor kinase domain inhibitors (TORKinibs). Curr. Top. Microbiol. Immunol. 347, 241–262 (2010)

    PubMed  CAS  Google Scholar 

  48. L. Connell-Crowley, J.W. Harper, D.W. Goodrich, Cyclin D1/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation. Mol. Biol. Cell 8, 287–301 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. C.S. Gradziel, P.A. Jordan, D. Jewel, F.J. Dufort, S.J. Miller, T.C. Chiles, M.F. Roberts, D-3-deoxy-dioctanoylphosphatidylinositol induces cytotoxicity in human MCF-7 breast cancer cells via a mechanism that involves downregulation of the D-type cyclin-retinoblastoma pathway. Biochim. Biophys. Acta. 1861, 1808–1815 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. R.A. O’Neill, A. Bhamidipati, X. Bi, D. Deb-Basu, L. Cahill, J. Ferrante, E. Gentalen, M. Glazer, J. Gossett, K. Hacker, C. Kirby, J. Knittle, R. Loder, C. Mastroieni, M. Maclaren, T. Mills, U. Nguyen, N. Parker, A. Rice, D. Roach, D. Suich, D. Voehringer, K. Voss, J. Yang, T. Yang, P.B. Vander Horn. Isoelectric focusing technology quantifies protein signaling in 25 cells. Proc. Natl. Acad. Sci. USA. 103, 16153–16158 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Göran Landberg (Sahlgrenska Cancer Center, University of Gothenburg, Sweden) for providing the MDA-MB-231 and MCF-7 cell lines used in this study. This work was supported by the Berliner Krebsgesellschaft (grant to KD).

Authors‘ contributions

Participated in research design: Danker, Hildmann, Klein, Eickholt and Lucka. Conducted experiments: Pelz, Häckel, Semini. Schrötter, Stricker, Bintig and Mrawietz. Synthesis of Ino-C2-PAF: Shmanai. Performed data analysis: Pelz, Häckel and Hildmann. Wrote the manuscript with input from all of the authors: Danker, Häckel and Pelz. Supervision the entire study: Danker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Danker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Research involving human paricipants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study informed consent is not required

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelz, C., Häckel, S., Semini, G. et al. Inositol-C2-PAF acts as a biological response modifier and antagonizes cancer-relevant processes in mammary carcinoma cells. Cell Oncol. 41, 505–516 (2018). https://doi.org/10.1007/s13402-018-0387-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-018-0387-3

Keywords

Navigation