Skip to main content
Log in

Evaluation of cytotoxicity, apoptosis, and angiogenesis induced by Kombucha extract-loaded PLGA nanoparticles in human ovarian cancer cell line (A2780)

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The aim of this study was to load kombucha-fermented extract (KFE) on PLGA nanoparticles (KFE-PNPs) to increase bioavailability and to evaluate its anti-cancer effects. The KFE-PNPs (water1/oil/water2) were characterized using scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS) assays, followed was measured the encapsulation efficiency (%EE) and release of KFE by UV spectrophotometer. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) procedure was used for investigation of KFE-PNPs toxicity, and then, the pro-apoptotic capacity of KFE-PNPs was evaluated by acridine orange (AO) and propidium iodide (PI) staining, flow cytometry, and molecular analysis for P53 and TNF-α genes. The angiogenic effect of KFE-PNPs was evaluated using chick chorioallantoic membrane (CAM) and real-time PCR (VEGF gene expression) methods. The DLS results showed the formation of stable particles (zeta potential: − 26.27 mv) in nanometer dimensions (288.32 nm) with uniform dispersion index (PDI: 0.3). The %EE of KFE in PLGA-NPs was reported to be 71%. The selective toxicity effect of KFE-PNPs against A2780 (IC50 < 200 µg/mL) in comparison with HFF (IC50 > 500 µg/mL) cells was reported. The pro-apoptotic effects of KFE-PNPs were confirmed by increasing the number of apoptotic cells in the AO/PI staining, increasing the percentage of SubG1 phase cells in flow cytometry, and increasing the expression of apoptotic genes (P53 and TNF-α). Decreased expression of VEGF gene in qPCR procedure as well as decreased length and number of blood vessels and embryonic growth factors in CAM assay showed anti-angiogenic effects of KE-PNPs. According to the results, KFE-PNPs can be suggested for more research on cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cortez AJ, Tudrej P, Kujawa KA, Lisowska KM (2018) Advances in ovarian cancer therapy. Cancer Chemother Pharmacol 81:17–38

    Article  Google Scholar 

  2. Pistollato F, Iglesias RC, Ruiz R, Aparicio S, Crespo J, Lopez LD, Giampieri F, Battino M (2017) The use of natural compounds for the targeting and chemoprevention of ovarian cancer. Cancer Lett 411:191–200

    Article  Google Scholar 

  3. Palmirotta R, Silvestris E, D’Oronzo S, Cardascia A, Silvestris F (2017) Ovarian cancer: novel molecular aspects for clinical assessment. Crit Rev Oncol Hematol 117:12–29

    Article  Google Scholar 

  4. Wan S, Zhang L, Quan Y, Wei K (2018) Resveratrol-loaded PLGA nanoparticles: enhanced stability, solubility and bioactivity of resveratrol for non-alcoholic fatty liver disease therapy. Royal Soc Open Sci 5:1814

    Article  Google Scholar 

  5. Mousavi SM, Hashemi SA, Zarei M, Gholami A, Lai CW, Chiang WH, Omidifar N, Bahrani S, Mazraedoost S (2020) Recent progress in chemical composition, production, and pharmaceutical effects of kombucha beverage: a complementary and alternative medicine. Evide-Based Complement. Altern Med 2020

  6. Chakravorty S, Bhattacharya S, Chatzinotas A, Chakraborty W, Bhattacharya D, Gachhui R (2016) Kombucha tea fermentation: microbial and biochemical dynamics. Int J Food Microbiol 220:63–72

    Article  Google Scholar 

  7. Jayabalan R, Subathradevi P, Marimuthu S, Sathishkumar M, Swaminathan K (2008) Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chem 109:227–234

    Article  Google Scholar 

  8. Fu C, Yan F, Cao Z, Xie F, Lin J (2014) Antioxidant activities of kombucha prepared from three different substrates and changes in content of probiotics during storage. Food Sci Technol 34:123–126

    Article  Google Scholar 

  9. Jayabalan R, Malbaša RV, Lončar ES, Vitas JS, Sathishkumar M (2014) A review on kombucha tea—microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr Rev Food Sci Food Saf 13:538–550

    Article  Google Scholar 

  10. Watkins R, Wu L, Zhang C, Davis RM, Xu B (2015) Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine 10:6055

    Google Scholar 

  11. Trucillo P (2021) Drug carriers: classification, administration, release profiles, and industrial approach. Processes 9:470

    Article  Google Scholar 

  12. Garinot M, Fiévez V, Pourcelle V, Stoffelbach F, des Rieux A, Plapied L, Theate I, Freichels H, Jérôme C, Marchand-Brynaert J (2007) PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release 120:195–204

    Article  Google Scholar 

  13. Li D, Sun H, Hu X, Lin Y, Xu B (2013) Facile method to prepare PLGA/hydroxyapatite composite scaffold for bone tissue engineering. Mater Technol 28:316–323

    Article  Google Scholar 

  14. Li Y, Liu L, Qu X, Ren L, Dai K (2015) Drug delivery property, antibacterial performance and cytocompatibility of gentamicin loaded poly (lactic-co-glycolic acid) coating on porous magnesium scaffold. Mater Technol 30:B96–B103

    Article  Google Scholar 

  15. Acharya S, Sahoo SK (2011) PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 63:170–183

    Article  Google Scholar 

  16. Peres C, Matos AI, Conniot J, Sainz V, Zupančič E, Silva JM, Graca L, Gaspar RS, Preat V, Florindo HF (2017) Poly (lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomater 48:41–57

    Article  Google Scholar 

  17. Mir M, Ahmed N, Ur Rehman A (2017) Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf. B: Biointerfaces 159:217–231

    Article  Google Scholar 

  18. Danhier F, Ansorena E (2012) Si/va JM, Coco R., Breton A. Preat V J Control Release 161:505–522

    Article  Google Scholar 

  19. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces 75:1–18

    Article  Google Scholar 

  20. Ramalho MJ, Loureiro JA, Gomes B, Frasco MF, Coelho MA, Pereira MC (2015) PLGA nanoparticles as a platform for vitamin D-based cancer therapy. Beilstein J Nanotechnol 6:1306–1318

    Article  Google Scholar 

  21. Murugesan G, Sathishkumar M, Jayabalan R, Binupriya A, Swaminathan K, Yun S (2009) Hepatoprotective and curative properties of Kombucha tea against carbon tetrachloride-induced toxicity. J Microbiol Biotechnol 19:397–402

    Article  Google Scholar 

  22. Sainz V, Peres C, Ciman T, Rodrigues C, Viana A, Afonso C, Barata T, Brocchini S, Zloh M, Gaspar RS (2016) Optimization of protein loaded PLGA nanoparticle manufacturing parameters following a quality-by-design approach. RSC Adv 6:104502–104512

    Article  Google Scholar 

  23. Shabestarian H, Homayouni Tabrizi M, Movahedi M, Neamati A, Sharifnia F (2021) Putative mechanism for cancer suppression by PLGA nanoparticles loaded with Peganum harmala smoke extract. J Microencapsul 38:324–337

    Article  Google Scholar 

  24. Khan MM, Madni A, Torchilin V, Filipczak N, Pan J, Tahir N, Shah H (2019) Lipid-chitosan hybrid nanoparticles for controlled delivery of cisplatin. Drug Deliv 26:765–772

    Article  Google Scholar 

  25. Dandamudi M, McLoughlin P, Behl G, Rani S, Coffey L, Chauhan A, Kent D, Fitzhenry L (2021) Chitosan-coated PLGA nanoparticles encapsulating triamcinolone acetonide as a potential candidate for sustained ocular drug delivery. Pharmaceutics 13:1590

    Article  Google Scholar 

  26. Samba I, Hernandez R, Rescignano N, Mijangos C, Kenny JM (2015) Nanocomposite hydrogels based on embedded PLGA nanoparticles in gelatin. Nanocomposites 1:46–50

    Article  Google Scholar 

  27. Rabha B, Bharadwaj KK, Baishya D, Sarkar T, Edinur HA, Pati S (2021) Synthesis and characterization of diosgenin encapsulated poly-ε-caprolactone-pluronic nanoparticles and its effect on brain cancer cells. Polymers 13:1322

    Article  Google Scholar 

  28. Hosseini SF, Zandi M, Rezaei M, Farahmandghavi F (2013) Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydr Polym 95:50–56

    Article  Google Scholar 

  29. Soltani M, Parivar K, Baharara J, Kerachian MA, Asili J (2015) Putative mechanism for apoptosis-inducing properties of crude saponin isolated from sea cucumber (Holothuria leucospilota) as an antioxidant compound. Iran J Basic Med Sci 18:180

    Google Scholar 

  30. Mishra S, Verma SS, Rai V, Awasthee N, Arya JS, Maiti KK, Gupta SC (2019) Curcuma raktakanda induces apoptosis and suppresses migration in cancer cells: role of reactive oxygen species. Biomolecules 9:159

    Article  Google Scholar 

  31. Khatamian N, Soltani M, Shadan B, Neamati A, Tabrizi MH, Hormozi B (2021) Pinus morrisonicola needles essential oil nanoemulsions as a novel strong antioxidant and anticancer agent. Inorg Nano-Met Chem 1–9

  32. Soltani M, Etminan A, Rahmati A, Behjati Moghadam M, Ghaderi Segonbad G, Homayouni Tabrizi M (2021) Incorporation of Boswellia sacra essential oil into chitosan/TPP nanoparticles towards improved therapeutic efficiency. Mater Technol 1–13

  33. Thein-Han W, Misra R (2009) Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197

    Article  Google Scholar 

  34. Stetefeld J, McKenna SA, Patel TR (2016) Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 8:409–427

    Article  Google Scholar 

  35. Che Marzuki NH, Wahab RA, Abdul Hamid M (2019) An overview of nanoemulsion: concepts of development and cosmeceutical applications. Biotechnol Biotechnol Equip 33:779–797

    Article  Google Scholar 

  36. Balakrishnan K, Casimeer SC, Ghidan AY, Ghethan FY, Venkatachalam K, Singaravelu A (2021) Bioformulated hesperidin-loaded PLGA nanoparticles counteract the mitochondrial-mediated intrinsic apoptotic pathway in cancer cells. J Inorg Organomet Polym Mater 31:331–343

    Article  Google Scholar 

  37. Ayed L, Abid SB, Hamdi M (2017) Development of a beverage from red grape juice fermented with the Kombucha consortium. Ann Microbiol 67:111–121

    Article  Google Scholar 

  38. Wang X, Lin Y (2008) Tumor necrosis factor and cancer, buddies or foes? 1. Acta Pharmacol Sin 29:1275–1288

    Article  Google Scholar 

  39. Khan I, Gothwal A, Sharma AK, Kesharwani P, Gupta L, Iyer AK, Gupta U (2016) PLGA nanoparticles and their versatile role in anticancer drug delivery. Crit Rev Ther Drug Carrier Syst 33

  40. Amjadi I, Rabiee M, Hosseini MS (2013) Anticancer activity of nanoparticles based on PLGA and its co-polymer: in-vitro evaluation. Iran J Pharm Res 12:623

    Google Scholar 

  41. Rezvantalab S, Drude NI, Moraveji MK, Güvener N, Koons EK, Shi Y, Lammers T, Kiessling F (2018) PLGA-based nanoparticles in cancer treatment. Front Pharmacol 9:1260

    Article  Google Scholar 

  42. Esfanjani AF, Jafari SM (2016) Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf B: Biointerfaces 146:532–543

    Article  Google Scholar 

  43. Abdul Rahim R, Jayusman PA, Muhammad N, Ahmad F, Mokhtar N, Naina Mohamed I, Mohamed N, Shuid AN (2019) Recent advances in nanoencapsulation systems using PLGA of bioactive phenolics for protection against chronic diseases. Int J Environ Res 16:4962

    Google Scholar 

  44. Cohen-Sela E, Teitlboim S, Chorny M, Koroukhov N, Danenberg HD, Gao J, Golomb G (2009) Single and double emulsion manufacturing techniques of an amphiphilic drug in PLGA nanoparticles: formulations of mithramycin and bioactivity. J Pharm Sci 98:1452–1462

    Article  Google Scholar 

  45. del Castillo-Santaella T, Ortega-Oller I, Padial-Molina M, O’Valle F, Galindo-Moreno P, Jódar-Reyes AB, Peula-García JM (2019) Formulation, colloidal characterization, and in vitro biological effect of BMP-2 loaded PLGA nanoparticles for bone regeneration. Pharmaceutics 11:388

    Article  Google Scholar 

  46. Abuzar SM, Ahn JH, Park KS, Park EJ, Baik SH, Hwang SJ (2019) Pharmacokinetic profile and anti-adhesive effect of oxaliplatin-PLGA microparticle-loaded hydrogels in rats for colorectal cancer treatment. Pharmaceutics 11:392

    Article  Google Scholar 

  47. Shmool TA, Hooper PJ, Kaminski Schierle GS, van der Walle CF, Zeitler JA (2019) Terahertz spectroscopy: an investigation of the structural dynamics of freeze-dried poly lactic-co-glycolic acid microspheres. Pharmaceutics 11:291

    Article  Google Scholar 

  48. Albisa A, Piacentini E, Sebastian V, Arruebo M, Santamaria J, Giorno L (2017) Preparation of drug-loaded PLGA-PEG nanoparticles by membrane-assisted nanoprecipitation. Pharm Res 34:1296–1308

    Article  Google Scholar 

  49. Alebooye LF, Hafezi GZ, Alibolandi M, Ebrahimian M, Hashemi M (2016) Evaluation of the effect of crocetin on antitumor activity of doxorubicin encapsulated in PLGA nanoparticles

  50. Wu Y, Yang W, Wang C, Hu J, Fu S (2005) Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharm 295:235–245

    Article  Google Scholar 

  51. Frank A, Rath SK, Venkatraman SS (2005) Controlled release from bioerodible polymers: effect of drug type and polymer composition. J Control Release 102:333–344

    Article  Google Scholar 

  52. Kesente M, Kavetsou E, Roussaki M, Blidi S, Loupassaki S, Chanioti S, Siamandoura P, Stamatogianni C, Philippou E, Papaspyrides C (2017) Encapsulation of olive leaves extracts in biodegradable PLA nanoparticles for use in cosmetic formulation. Bioeng 4:75

    Google Scholar 

  53. Lei T, Manchanda R, Fernandez-Fernandez A, Huang YC, Wright D, McGoron AJ (2014) Thermal and pH sensitive multifunctional polymer nanoparticles for cancer imaging and therapy. RSC Adv 4:17959–17968

    Article  Google Scholar 

  54. Su YL, Hu SH (2018) Functional nanoparticles for tumor penetration of therapeutics. Pharmaceutics 10:193

    Article  Google Scholar 

  55. Gebreel RM, Edris NA, Elmofty HM, Tadros MI, El-Nabarawi MA, Hassan DH (2021) Development and characterization of PLGA nanoparticle-laden hydrogels for sustained ocular delivery of norfloxacin in the treatment of Pseudomonas keratitis: an experimental study. Drug Des Devel 15:399

    Article  Google Scholar 

  56. Dufresne C, Farnworth E (2000) Tea, Kombucha, and health: a review. Int Food Res J 33:409–421

    Article  Google Scholar 

  57. Xia X, Dai Y, Wu H, Liu X, Wang Y, Yin L, Wang Z, Li X, Zhou J (2019) Kombucha fermentation enhances the health-promoting properties of soymilk beverage. J. Funct. Foods 62:103549

    Article  Google Scholar 

  58. Deghrigue M, Chriaa J, Battikh H, Kawther A, Bakhrouf A (2013) Antiproliferative and antimicrobial activities of kombucha tea. Afr J Microbiol Res 7:3466–3470

    Google Scholar 

  59. Arzani H, Adabi M, Mosafer J, Dorkoosh F, Khosravani M, Maleki H, Nekounam H, Kamali M (2019) Preparation of curcumin-loaded PLGA nanoparticles and investigation of its cytotoxicity effects on human glioblastoma U87MG cells. Biointerface Res Appl Chem 9:4225–4231

    Google Scholar 

  60. Mutha RE, Surana SJ (2018) Ultrasonic frequency based development of chrysin nanoparticles: assessment of bioavailability, anti-cancer activity and stability. Mater Technol 33:495–505

    Article  Google Scholar 

  61. Azandeh SS, Abbaspour M, Khodadadi A, Khorsandi L, Orazizadeh M, Heidari-Moghadam A (2017) Anticancer activity of curcumin-loaded PLGA nanoparticles on PC3 prostate cancer cells. Iran J Pharm Res 16:868

    Google Scholar 

  62. C de SL Oliveira AL, Araújo Júnior RFd, Gomes de Carvalho T, B Chan A, Schomann T, Tamburini, F, de Geus-Oei LF, J Cruz L (2020) Effect of oxaliplatin-loaded poly (d,l-lactide-co-glycolic acid)(PLGA) nanoparticles combined with retinoic acid and cholesterol on apoptosis, drug resistance, and metastasis factors of colorectal cancer. Pharmaceutics 12:193

  63. Labuschagne CF, Zani F, Vousden KH (2018) Control of metabolism by p53–cancer and beyond. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1870:32–42.

  64. Acharya D, Satapathy S, Thathapudi JJ, Somu P, Mishra G (2020) Biogenic synthesis of silver nanoparticles using marine algae Cladophora glomerata and evaluation of apoptotic effects in human colon cancer cells. Mater Technol 1–12

  65. Sharma N, Kumari RM, Gupta N, Syed A, Bahkali AH, Nimesh S (2020) Poly-(lactic-co-glycolic) acid nanoparticles for synergistic delivery of epirubicin and paclitaxel to human lung cancer cells. Molecules 25:4243

    Article  Google Scholar 

  66. Alhakamy NA, Md S (2019) Repurposing itraconazole loaded PLGA nanoparticles for improved antitumor efficacy in non-small cell lung cancers. Pharmaceutics 11:685

    Article  Google Scholar 

  67. Nassir AM, Shahzad N, Ibrahim IA, Ahmad I, Md S, Ain MR (2018) Resveratrol-loaded PLGA nanoparticles mediated programmed cell death in prostate cancer cells. Saudi Pharm J 26:876–885

    Article  Google Scholar 

  68. Balkwill F (2006) TNF-α in promotion and progression of cancer. Cancer Metastasis Rev 25:409–416

    Article  Google Scholar 

  69. Qi X, Song X, Liu P, Yi T, Li S, Xie C, Zheng Y, Bai Y, Sun C, Wei Y (2011) Antitumor effects of PLGA nanoparticles encapsulating the human PNAS-4 gene combined with cisplatin in ovarian cancer. Oncol Rep 26:703–710

    Google Scholar 

  70. Almnhawy M, Jebur M, Alhajamee M, Marai K, Tabrizi MH (2020) PLGA-based nano-encapsulation of trachyspermum ammi seed essential oil (TSEO-PNP) as a safe, natural, efficient, anticancer compound in human HT-29 colon cancer cell line. Nutr. Cancer 1–13

  71. Liu J, Zhang X, Li G, Xu F, Li S, Teng L, Li Y, Sun F (2019) Anti-angiogenic activity of bevacizumab-bearing dexamethasone-loaded PLGA nanoparticles for potential intravitreal applications. Int J Nanomedicine 14:8819

    Article  Google Scholar 

Download references

Acknowledgements

The authors very much appreciate the support provided by the Islamic Azad University, Shahrood, Iran, in the conducting of the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Homayouni Tabrizi.

Ethics declarations

Ethical considerations

The Ethics Committee of Islamic Azad University, Shahrood Branch (Iran) approved our research protocol (IR.IAU.SHAHROOD.REC.1400.011).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghandehari, S., Goodarzi, M.T., Nia, J.I. et al. Evaluation of cytotoxicity, apoptosis, and angiogenesis induced by Kombucha extract-loaded PLGA nanoparticles in human ovarian cancer cell line (A2780). Biomass Conv. Bioref. 13, 13103–13115 (2023). https://doi.org/10.1007/s13399-021-02283-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02283-2

Keywords

Navigation