Skip to main content
Log in

Bioformulated Hesperidin-Loaded PLGA Nanoparticles Counteract the Mitochondrial-Mediated Intrinsic Apoptotic Pathway in Cancer Cells

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

An Author Correction to this article was published on 31 October 2020

This article has been updated

Abstract

In this study, a biological approach has carried out to develop the polymer-based nanoparticles using a bioflavonoid of hesperidin. This formulation has been attempted and established for its biomedical application in cancer treatment. Hesperidin loaded PLGA nanoparticles (Hes-PLGA-NPs) were processed by oil in water single emulsion solvent evaporation technique and the physiochemical traits were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), XRD and NMR analysis. DLS and TEM analysis revealed that the preparation yielded a spherical shaped nanoparticle with an average measure of 38.4 nm. The XRD spectrum showed a crystalline type of nanoparticles. The FTIR and NMR investigation exposed that the PLGA also serves up as capping or switching material for pH-dependent drug release. Furthermore, the cationic natures of Hes-PLGA-NPs easily penetrate cancerous cells and efficiently repressed the growth in acidic conditions. Taking into account, the findings of in vitro studies in HEp-2 cell suggested that bioformulated Hes-PLGA-NPs are more competent than native hesperidin and might be used as a potent anti-cancer candidate. Further studies are warranted to expose the toxicity and molecular level mechanisms involved in the anti-cancer activity of the synthesized Hes-PLGA-NPs as nanomedicine.

Grapic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 31 October 2020

    The authors noticed an inadvertent error in our article “Bioformulated Hesperidin-Loaded PLGA Nanoparticles Counteract the Mitochondrial-Mediated Intrinsic Apoptotic Pathway in Cancer Cells”.

References

  1. A.K. Sah, A. Vyas, P.K. Suresh, B. Gidwani, Application of nanocarrier-based drug delivery system in treatment of oral cancer. Artif. Cells Nanomed. Biotechnol. 46, 650–657 (2018)

    CAS  PubMed  Google Scholar 

  2. M. Sengar, A. Fundytus, W.M. Hopman, H. Malhotra, S. Gupta, C. Pramesh, N. Hammad, R. Sullivan, V. Vanderpuye, B. Seruga, Medical oncology in India: workload, infrastructure, and delivery of care. Indian J. Med. Paediatr. Oncol. 40, 121 (2019)

    Google Scholar 

  3. K. Suresh, S. Manoharan, M.A. Vijayaanand, G. Sugunadevi, Chemopreventive and antioxidant efficacy of (6)-paradol in 7, 12-dimethylbenz (a) anthracene induced hamster buccal pouch carcinogenesis. Pharmacol. Rep. 62, 1178–1185 (2010)

    CAS  PubMed  Google Scholar 

  4. J.H. Meurman, Oral microbiota and cancer. J. Oral Microbiol. 2, 5195 (2010)

    Google Scholar 

  5. D.M. Cohan, S. Popat, S.E. Kaplan, N. Rigual, T. Loree, W.L. Hicks Jr., Oropharyngeal cancer: current understanding and management. Curr. Opin. Otolaryngol. Head Neck Surg. 17, 88–94 (2009)

    PubMed  Google Scholar 

  6. F. Danhier, E. Ansorena, J.M. Silva, R. Coco, A. Le Breton, V. Préat, PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release. 161, 505–522 (2012)

    CAS  PubMed  Google Scholar 

  7. D.N. Kapoor, A. Bhatia, R. Kaur, R. Sharma, G. Kaur, Dhawan, PLGA: a unique polymer for drug delivery. Ther. Deliv. 6, 41–58 (2015)

    CAS  PubMed  Google Scholar 

  8. E. Swider, O. Koshkina, J. Tel, L.J. Cruz, I.J.M. de Vries, M. Srinivas, Customizing poly (lactic-co-glycolic acid) particles for biomedical applications. Acta Biomater. 73, 38–51 (2018)

    CAS  PubMed  Google Scholar 

  9. I. Bala, S. Hariharan, M.R. Kumar, PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug. 21, 387 (2004)

    CAS  Google Scholar 

  10. V. Kuntić, J. Brborić, I. Holclajtner-Antunović, S. Uskoković-Marković, Evaluating the bioactive effects of flavonoid hesperidin: a new literature data survey. Vojnosanit. Pregl. 71, 60–65 (2014)

    PubMed  Google Scholar 

  11. A. Garg, S. Garg, L. Zaneveld, A. Singla, Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother. Res. 15, 655–669 (2001)

    CAS  PubMed  Google Scholar 

  12. B. Ameer, R.A. Weintraub, J.V. Johnson, R.A. Yost, R.L. Rouseff, Flavanone absorption after naringin, hesperidin, and citrus administration. Clin. Pharmacol. Ther. 60, 34–40 (1996)

    CAS  PubMed  Google Scholar 

  13. A. Garg, S. Garg, L.J. Zaneveld, A.K. Singla, Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytothe. Res. 15(8), 655–669 (2001)

    CAS  Google Scholar 

  14. R. Ikan, Natural Products: A Laboratory Guide (Academic Press, New York, 1991)

    Google Scholar 

  15. A. Roohbakhsh, H. Parhiz, F. Soltani, R. Rezaee, M. Iranshahi, Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci. 124, 64–74 (2015)

    CAS  PubMed  Google Scholar 

  16. R. Bartoszewski, A. Hering, M. Marszałł, J.S. Hajduk, S. Bartoszewska, N. Kapoor, K. Kochan, Ochocka. Mangiferin has an additive effect on the apoptotic properties of hesperidin in Cyclopia sp. tea extracts. PloS ONE 9(3), e92128 (2014)

    PubMed  PubMed Central  Google Scholar 

  17. H.J. Park, M.J. Kim, E. Ha, J.H. Chung, Apoptotic effect of hesperidin through caspase3 activation in human colon cancer cells, SNU-C4. Phytomedicine. 15(1–2), 147–151 (2008)

    CAS  PubMed  Google Scholar 

  18. T. Tanaka, T. Tanaka, M. Tanaka, T. Kuno, Cancer chemoprevention by citrus pulp and juices containing high amounts of β-cryptoxanthin and hesperidin. J. Biomed. Biotechnol. (2012). https://doi.org/10.1155/2012/516918

    Article  PubMed  PubMed Central  Google Scholar 

  19. J. Zhao, Y. Li, J. Gao, Y. De, Hesperidin inhibits ovarian cancer cell viability through endoplasmic reticulum stress signaling pathways. Oncol. Lett. 14, 5569–5574 (2017)

    PubMed  PubMed Central  Google Scholar 

  20. S. Vijayalakshmi, A.V. Mariadoss, V. Ramachandran, V. Shalini, B. Agilan, C.C. Sangeetha, P. Balu, V.S. Kotakadi, V. Karthikkumar, Ernest. Polydatin encapsulated poly [lactic-co-glycolic acid] nanoformulation counteract the 7, 12-dimethylbenz [a] anthracene mediated experimental carcinogenesis through the inhibition of cell proliferation. Antioxidants. 8(9), 375 (2019)

    PubMed Central  Google Scholar 

  21. M.B. Hansen, S.E. Nielsen, K. Berg, Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119, 203–210 (1989)

    CAS  PubMed  Google Scholar 

  22. S.H. Mahassni, R.M. Al-Reemi, Apoptosis and necrosis of human breast cancer cells by an aqueous extract of garden cress (Lepidium sativum) seeds. Saudi. J. Biol. Sci. 20, 131–139 (2013)

    PubMed  PubMed Central  Google Scholar 

  23. S. Vrignaud, J.-P. Benoit, P. Saulnier, Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials 32, 8593–8604 (2011)

    CAS  PubMed  Google Scholar 

  24. M.A. Anand, K. Saravanakumar, S. Anbazhagan, K. Venkatachalam, M.H. Wang, Folic acid functionalized starch encapsulated green synthesized copper oxide nanoparticles for targeted drug delivery in breast cancer therapy. Int. J. Biol. Macromol. 164, 2073 (2020)

    Google Scholar 

  25. G.M. Sulaiman, H.M. Waheeb, M.S. Jabir, S.H. Khazaal, Y.H. Dewir, Y. Naidoo, Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model. Sci Rep 10, 9362 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. R. Singh, P. Kesharwani, N.K. Mehra, S. Singh, S. Banerjee, N.K. Jain, Development and characterization of folate anchored Saquinavir entrapped PLGA nanoparticles for anti-tumor activity. Drug Dev Ind Pharmacy 41(11), 1888–1901 (2015)

    CAS  Google Scholar 

  27. S.H. Ali, G.M. Sulaiman, M.M. Al-Halbosiy, M.S. Jabir, A.H. Hameed, Fabrication of hesperidin nanoparticles loaded by poly lactic co-glycolic acid for improved therapeutic efficiency and cytotoxicity. Artif. Cells Nanomed. Biotechnol. 47(1), 378–394 (2019)

    CAS  PubMed  Google Scholar 

  28. W. Klöpffer, Introduction to Polymer Spectroscopy (Springer, Frankfurt, 1984)

    Google Scholar 

  29. P. Lakshmi, K. Rajesh, U. Devan, K. Mahesh, G. Nithya, J. Antony, Encapsulation of doxorubicin in PLGA nanoparticles enhances cancer therapy. Clin. Oncol. 2, 1–6 (2017)

    Google Scholar 

  30. R. Singh, P. Kesharwani, N.K. Mehra, S. Singh, S. Banerjee, N.K. Jain, Development and characterization of folate anchored Saquinavir entrapped PLGA nanoparticles for anti-tumor activity. Drug Dev. Ind. Pharmacy 41(11), 1888–1901 (2015)

    CAS  Google Scholar 

  31. R.A. Jain, The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide)(PLGA) devices. Biomaterials. 21(23), 2475–2490 (2000)

    CAS  PubMed  Google Scholar 

  32. S. Majumdar, R. Srirangam, Solubility, stability, physicochemical characteristics and in vitro ocular tissue permeability of hesperidin: a natural bioflavonoid. Pharm. Res. 26, 1217–1225 (2009)

    CAS  PubMed  Google Scholar 

  33. S.A. Cho, S.R. Cha, S.M. Park, K.H. Kim, H.G. Lee, E.Y. Kim, D. Lee, G. Khang, Effects of hesperidin loaded poly (lactic-co-glycolic acid) scaffolds on growth behavior of costal cartilage cells in vitro and in vivo. J. Biomater. Sci. Polym. Ed. 25, 625–640 (2014)

    CAS  PubMed  Google Scholar 

  34. D.S. Wishart, C. Knox, A.C. Guo, R. Eisner, N. Young, B. Gautam, D.D. Hau, N. Psychogios, E. Dong, S. Bouatra, R. Mandal, HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37(Database issue), D603–D610 (2009). https://doi.org/10.1093/nar/gkn810

    Article  CAS  PubMed  Google Scholar 

  35. Y.S. Jadeja, K.M. Kapadiya, H.J. Jebaliya, A.K. Shah, R.C. Khunt, Dihedral angle study in Hesperidin using NMR spectroscopy. Magn. Reson. Chem. 55(6), 589–594 (2017)

    CAS  PubMed  Google Scholar 

  36. J.L. Nieto, A.M. Gutierrez, Spectrosc. Lett. 19, 427–434 (1986)

    CAS  Google Scholar 

  37. V. Mishra, P. Kesharwani, N.K. Jain, Functionalized polymeric nanoparticles for delivery of bioactives. Nanobiomedicine 3, 91–123 (2014)

    Google Scholar 

  38. R. Singh, J.W. Lillard Jr., Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86, 215–223 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. M. Ersoz, A. Erdemir, D. Duranoglu, D. Uzunoglu, T. Arasoglu, S. Derman, B. Mansuroglu, Comparative evaluation of hesperetin loaded nanoparticles for anticancer activity against C6 glioma cancer cells. Artif. Cells Nanomed. Biotechnol. 47, 319–329 (2019)

    CAS  PubMed  Google Scholar 

  40. X. Chen, Z. Zhong, Z. Xu, L. Chen, Y. Wang, 2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radic. Res. 44, 587–604 (2010)

    CAS  PubMed  Google Scholar 

  41. G. Borges Bubols, D. da Rocha Vianna, A. Medina-Remon, G. von Poser, R.M. Lamuela-Raventos, V.L. Eifler-Lima, S. Cristina Garcia, The antioxidant activity of coumarins and flavonoids. Mini. Rev. Med. Chem. 13, 318–334 (2013)

    Google Scholar 

  42. A.V. Mariadoss, R. Vinayagam, B. Xu, K. Venkatachalam, V. Sankaran, S. Vijayakumar, S.R. Bakthavatsalam, S.A. Mohamed, E. David. Phloretin loaded chitosan nanoparticles enhance the antioxidants and apoptotic mechanisms in DMBA induced experimental carcinogenesis. Chem. Biol. Interact. 308, 11–19 (2019)

    PubMed  Google Scholar 

  43. Y. Li, Z.-Z. Zhang, Sustained curcumin release from PLGA microspheres improves bone formation under diabetic conditions by inhibiting the reactive oxygen species production. Drug Des. Devel. Ther. 12, 1453 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. F. Armutcu, S. Akyol, O. Akyol, The interaction of glutathione and thymoquinone and their antioxidant properties. Electron. J. Gen. Med. 15, em59 (2018)

    Google Scholar 

  45. R. Ahmed, M. Tariq, I.S. Ahmad, H. Fouly, A. Hasan, M. Kushad, Poly (lactic-co-glycolic acid) nanoparticles loaded with callistemon citrinus phenolics exhibited anticancer properties against three breast cancer cell lines. J. Food Qual. 1, 12 (2019)

    Google Scholar 

  46. N. Sharma, R.M. Kumari, N. Gupta, S. Nimesh, Plant based bioactive compounds as an alternative for cancer therapy. Cancer Ther. 3, 215 (2019)

    Google Scholar 

  47. R.H. Wijdeven, B. Pang, Y.G. Assaraf, J. Neefjes, Old drugs, novel ways out: drug resistance toward cytotoxic chemotherapeutics. Drug Resist. Updat. 28, 65–81 (2016)

    PubMed  Google Scholar 

  48. S. Attoub, S. Sulaiman, K. Arafat, 14P Butein inhibits solid tumors cell viability, colony, and tumor growth via STAT3 signaling pathway and enhance the anti-cancer effects of Frondoside-A and camptothecin. Ann. Oncol. 30, i4 (2019)

    Google Scholar 

  49. A.A. Abd-Rabou, H.H. Ahmed, CS-PEG decorated PLGA nano-prototype for delivery of bioactive compounds: a novel approach for induction of apoptosis in HepG2 cell line. Adv. Med. Sci. 62, 357–367 (2017)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anbu Singaravelu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, K., Casimeer, S.C., Ghidan, A.Y. et al. Bioformulated Hesperidin-Loaded PLGA Nanoparticles Counteract the Mitochondrial-Mediated Intrinsic Apoptotic Pathway in Cancer Cells. J Inorg Organomet Polym 31, 331–343 (2021). https://doi.org/10.1007/s10904-020-01746-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01746-9

Keywords

Navigation