Skip to main content
Log in

Potato peels as feedstock for laccase-catalysed synthesis of phellinsin A

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Valorisation of food and agricultural waste can provide a cost-effective substrate source for laccase catalysis. This study evaluated the suitability of potato peels as feedstock for laccase-catalysed modification into value-added products. The optimal conditions for extracting the highest yield of chlorogenic acid (CLA) from potato peels were 300 W (ultrasonication power) and 39.375 min (extraction time). Alkaline hydrolysis of CLA extracted from potato peels produced caffeic acid (CFA) (yield 76.1%) which was in turn oxidised by laccase to produce phellinsin A (yield 32.8%, ~ 1/3 of CLA). Transformation from CLA to phellinsin A resulted in ~ two-fold increase in antioxidant capacity. Phellinsin A exhibited 16.7 and 8.6% cytotoxicity activity against MCF-7 (breast cancer) and HEK-293 (human embryonic kidney) cell lines, respectively. The low cytotoxicity of phellinsin A against normal human cells, coupled with its enhanced antioxidant properties, indicates a good antioxidant ingredient. Based on global potato production statistics, this hydrolytic process can annually recover 1.08e4 tons of CFA from potato peels, subsequently producing 3.53e3 tons of phellinsin A by laccase catalysis. Therefore, potato peel waste is a viable substrate source for laccase-catalysed synthesis of value-added bioactive compounds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen D, Lawton D, Thompson MR, Liu Q (2012) Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydr Polym 90:709–716. https://doi.org/10.1016/j.carbpol.2012.06.002

    Article  Google Scholar 

  2. Akyol H, Riciputi Y, Capanoglu E, Caboni MF, Verardo V (2016) Phenolic compounds in the potato and its byproducts: an overview. Int J Mol Sci 17:835. https://doi.org/10.3390/ijms17060835

    Article  Google Scholar 

  3. Arapoglou D, Varzakas T, Vlyssides A, Israilides C (2010) Ethanol production from potato peel waste (PPW). Waste Manage 30:1898–1902. https://doi.org/10.1016/j.wasman.2010.04.017

    Article  Google Scholar 

  4. Nardini M, Cirillo E, Natella F, Mencarelli D, Comisso A, Scaccini C (2002) Detection of bound phenolic acids: prevention by ascorbic acid and ethylenediaminetetraacetic acid of degradation of phenolic acids during alkaline hydrolysis. Food Chem 79:119–124. https://doi.org/10.1016/S0308-8146(02)00213-3

    Article  Google Scholar 

  5. Shahidi F, Yeo J (2016) Insoluble-bound phenolics in food. Molecules 21:1216. https://doi.org/10.3390/molecules21091216

    Article  Google Scholar 

  6. Piazzon A, Vrhovsek U, Masuero D, Mattivi F, Mandoj F, Nardini M (2012) Antioxidant activity of phenolic acids and their metabolites: synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid. J Agric Food Chem 60:12312–12323. https://doi.org/10.1021/jf304076z

    Article  Google Scholar 

  7. Kudanga T, Nemadziva B, Le Roes-Hill M (2017) Laccase catalysis for the synthesis of bioactive compounds. Appl Microbiol Biotechnol 101:13–33. https://doi.org/10.1007/s00253-016-7987-5

    Article  Google Scholar 

  8. Mikolasch A, Schauer F (2009) Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 82:605–624. https://doi.org/10.1007/s00253-009-1869-z

    Article  Google Scholar 

  9. Nemadziva B, Le Roes-Hill M, Koorbanally N, Kudanga T (2018) Small laccase-catalyzed synthesis of a caffeic acid dimer with high antioxidant capacity. Process Biochem 69:99–105. https://doi.org/10.1016/j.procbio.2018.03.009

    Article  Google Scholar 

  10. Hwang EI, Yun BS, Kim YK, Kwon BM, Kim HG, Lee HB et al (2000) Phellinsin A, a novel chitin synthases inhibitor produced by Phellinus sp. PL3. J Antibiot 53:903–911. https://doi.org/10.7164/antibiotics.53.903

    Article  Google Scholar 

  11. Hwang EI, Kim J-R, Jeong T-S, Lee S, Rho M-C, Kim SU (2006) Phellinsin A from Phellinus sp. PL3 exhibits antioxidant activities. Planta Med 72:572–575. https://doi.org/10.1055/s-2006-931533

    Article  Google Scholar 

  12. Kim SU, Hwang EI, Kim JR, Jeong TS, Lee S, Lee SH et al (2010) Pharmaceutical composition and health food comprising extract of Phellinus sp. PL3 or phellinsin A isolated from the same as an effective component for prevention and treatment of cardiovascular disease. Patent US20060115492A1

  13. Kim E, Lee HK, Hwang EI, Kim SU, Lee WS, Lee S et al (2005) Stereochemistry of phellinsin A: a concise synthesis of α-arylidene-γ-lactones. Synth Commun 35:1231–1238. https://doi.org/10.1081/SCC-200054845

    Article  Google Scholar 

  14. Heath RS, Ruscoe RE, Turner NJ (2021) The beauty of biocatalysis: sustainable synthesis of ingredients in cosmetics. Nat Prod Rep. https://doi.org/10.1039/D1NP00027F

    Article  Google Scholar 

  15. Krause J, Tobin G (2013) Discovery, development, and regulation of natural products. In: Kulka M (ed) Using old solutions to new problems: natural drug discovery in the 21st century. IntechOpen, pp 1–35

  16. World Health Organisation (2021) Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 10 Nov 2021

  17. Frontuto D, Carullo D, Harrison SM, Brunton NP, Ferrari G, Lyng JG, Pataro G (2019) Optimization of pulsed electric fields-assisted extraction of polyphenols from potato peels using response surface methodology. Food Bioprocess Technol 12:1708–1720. https://doi.org/10.1007/s11947-019-02320-z

    Article  Google Scholar 

  18. Kumari B, Tiwari BK, Hossain MB, Rai DK, Brunton NP (2017) Ultrasound-assisted extraction of polyphenols from potato peels: profiling and kinetic modelling. Int J Food Sci Technol 52:1432–1439. https://doi.org/10.1111/ijfs.13404

    Article  Google Scholar 

  19. Paleologou I, Vasiliou A, Grigorakis S, Makris DP (2016) Optimisation of a green ultrasound-assisted extraction process for potato peel (Solanum tuberosum) polyphenols using bio-solvents and response surface methodology. Biomass Convers Biorefin 6:289–299. https://doi.org/10.1007/s13399-015-0181-7

    Article  Google Scholar 

  20. Riciputi Y, Diaz-de-Cerio E, Akyol H, Capanoglu E, Cerretani L, Caboni MF, Verardo V (2018) Establishment of ultrasound-assisted extraction of phenolic compounds from industrial potato by-products using response surface methodology. Food Chem 269:258–263. https://doi.org/10.1016/j.foodchem.2018.06.154

    Article  Google Scholar 

  21. Machczynski MC, Vijgenboom E, Samyn B, Canters GW (2004) Characterization of SLAC: a small laccase from Streptomyces coelicolor with unprecedented activity. Protein Sci 13:2388–2397. https://doi.org/10.1110/ps.04759104

    Article  Google Scholar 

  22. Sherif M, Waung D, Korbeci B, Mavisakalyan V, Flick R, Brown G et al (2013) Biochemical studies of the multicopper oxidase (small laccase) from Streptomyces coelicolor using bioactive phytochemicals and site-directed mutagenesis. Microb Biotechnol 6:588–597. https://doi.org/10.1111/1751-7915.12068

    Article  Google Scholar 

  23. Prins A, Kleinsmidt L, Khan N, Kirby B, Kudanga T, Vollmer J et al (2015) The effect of mutations near the T1 copper site on the biochemical characteristics of the small laccase from Streptomyces coelicolor A3(2). Enzyme Microb Technol 68:23–32. https://doi.org/10.1016/j.enzmictec.2014.10.003

    Article  Google Scholar 

  24. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  Google Scholar 

  25. Adelakun OE, Kudanga T, Green IR, le Roes-Hill M, Burton SG (2012) Enzymatic modification of 2,6-dimethoxyphenol for the synthesis of dimers with high antioxidant capacity. Process Biochem 47:1926–1932. https://doi.org/10.1016/j.procbio.2012.06.027

    Article  Google Scholar 

  26. Gudipati R, Anreddy RN, Manda S (2011) Synthesis, anticancer and antioxidant activities of some novel N-(benzo[d]oxazol-2-yl)-2-(7- or 5-substituted-2-oxoindolin-3-ylidene) hydrazinecarboxamide derivatives. J Enzyme Inhib Med Chem 26:813–818. https://doi.org/10.3109/14756366.2011.556630

    Article  Google Scholar 

  27. Alves Filho EG, Sousa VM, Rodrigues S, de Brito ES, Fernandes FAN (2020) Green ultrasound-assisted extraction of chlorogenic acids from sweet potato peels and sonochemical hydrolysis of caffeoylquinic acids derivatives. Ultrason Sonochem 63:104911. https://doi.org/10.1016/j.ultsonch.2019.104911

    Article  Google Scholar 

  28. Koubaa M, Barba FJ, Grimi N, Mhemdi H, Koubaa W, Boussetta N, Vorobiev E (2016) Recovery of colorants from red prickly pear peels and pulps enhanced by pulsed electric field and ultrasound. Innov Food Sci Emerg Technol 37:336–344. https://doi.org/10.1016/j.ifset.2016.04.015

    Article  Google Scholar 

  29. Wu TY, Guo N, Teh CY, Hay JXW (2013) Theory and fundamentals of ultrasound. In: Wu TY, Guo N, Teh CY, Hay JXW (eds) Advances in ultrasound technology for environmental remediation. Springer, Dordrecht, pp 5–12

    Chapter  Google Scholar 

  30. Khurana JM, Chauhan S, Bansal G (2004) Facile hydrolysis of esters with KOH-methanol at ambient temperature. Monatsh Chem 135:83–87. https://doi.org/10.1007/s00706-003-0114-1

    Article  Google Scholar 

  31. Sánchez Maldonado AF, Mudge E, Gänzle MG, Schieber A (2014) Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Res Int 65:27–34. https://doi.org/10.1016/j.foodres.2014.06.018

    Article  Google Scholar 

  32. Payyavula RS, Shakya R, Sengoda VG, Munyaneza JE, Swamy P, Navarre DA (2015) Synthesis and regulation of chlorogenic acid in potato: rerouting phenylpropanoid flux in HQT-silenced lines. Plant Biotechnol J 13:551–564. https://doi.org/10.1111/pbi.12280

    Article  Google Scholar 

  33. Pathak PD, Mandavgane SA, Puranik NM, Jambhulkar SJ, Kulkarni BD (2018) Valorization of potato peel: a biorefinery approach. Crit Rev Biotechnol 38:218–230. https://doi.org/10.1080/07388551.2017.1331337

    Article  Google Scholar 

  34. Fry SC (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol 37:165–186. https://doi.org/10.1146/annurev.pp.37.060186.001121

    Article  Google Scholar 

  35. de la Lastra CA, Villegas I (2007) Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc Trans 35:1156–1160. https://doi.org/10.1042/BST0351156

    Article  Google Scholar 

  36. Zhou L, Elias RJ (2013) Antioxidant and pro-oxidant activity of (−)-epigallocatechin-3-gallate in food emulsions: Influence of pH and phenolic concentration. Food Chem 138:1503–1509. https://doi.org/10.1016/j.foodchem.2012.09.132

    Article  Google Scholar 

  37. Banerjee A, Kunwar A, Mishra B, Priyadarsini KI (2008) Concentration dependent antioxidant/pro-oxidant activity of curcumin: studies from AAPH induced hemolysis of RBCs. Chem Biol Interact 174:134–139. https://doi.org/10.1016/j.cbi.2008.05.009

    Article  Google Scholar 

  38. Park H-J (2014) CARI III inhibits tumor growth in a melanoma-bearing mouse model through induction of G0/G1 cell cycle arrest. Molecules 19:14383–14395. https://doi.org/10.3390/molecules190914383

    Article  Google Scholar 

  39. Konno S, Chu K, Feuer N, Phillips J, Choudhury M (2015) Potent anticancer effects of bioactive mushroom extracts (Phellinus linteus) on a variety of human cancer cells. J Clin Med Res 7:76–82. https://doi.org/10.14740/jocmr1996w

    Article  Google Scholar 

  40. Park H-J, Park J-B, Lee S-J, Song M (2017) Phellinus linteus grown on germinated brown rice increases cetuximab sensitivity of KRAS-mutated colon cancer. Int J Mol Sci 18:1746. https://doi.org/10.3390/ijms18081746

    Article  Google Scholar 

  41. Dhamodharan K, Ahlawat S, Kaushal M, Rajendran K (2020) Economics and cost analysis of waste biorefineries. In: Kumar RP, Gnansounou E, Raman JK, Baskar G (eds) Refining biomass residues for sustainable energy and bioproducts. Academic Press, pp 545–565

    Chapter  Google Scholar 

  42. Octave S, Thomas D (2009) Biorefinery: toward an industrial metabolism. Biochimie 91:659–664. https://doi.org/10.1016/j.biochi.2009.03.015

    Article  Google Scholar 

  43. van Merrienboer S (2020) World potato map 2019: fries are on the menu globally. RaboResearch Food & Agribusiness. https://research.rabobank.com/far/en/sectors/regional-food-agri/world_potato_map_2019.html. Accessed 13 Apr 2021

  44. CBI (2020) What is the demand for natural ingredients for health products on the European market? https://www.cbi.eu/market-information/natural-ingredients-health-products/what-demand. Accessed 12 Nov 2021

  45. Nomura S, Takahashi N, Inami N, Kajiura T, Yamada K, Nakamori H et al (2004) Probucol and ticlopidine: effect on platelet and monocyte activation markers in hyperlipidemic patients with and without type 2 diabetes. Atherosclerosis 174:329–335. https://doi.org/10.1016/j.atherosclerosis.2004.01.027

    Article  Google Scholar 

  46. Björkhem I, Henriksson-Freyschuss A, Breuer O, Diczfalusy U, Berglund L, Henriksson P (1991) The antioxidant butylated hydroxytoluene protects against atherosclerosis. Arterioscler Thromb Vasc Biol 11:15–22. https://doi.org/10.1161/01.ATV.11.1.15

    Article  Google Scholar 

  47. Soubra L, Sarkis D, Hilan C, Verger P (2007) Dietary exposure of children and teenagers to benzoates, sulphites, butylhydroxyanisol (BHA) and butylhydroxytoluen (BHT) in Beirut (Lebanon). Regul Toxicol Pharmacol 47:68–77. https://doi.org/10.1016/j.yrtph.2006.07.005

    Article  Google Scholar 

  48. Valentovic M (2007) Probucol. In: Enna SJ, Bylund DB (eds) xPharm: the comprehensive pharmacology reference. Elsevier, New York, pp 1–5

    Google Scholar 

  49. Korean Research Institute of Bioscience and Biotechnology (2004) Composition comprising extract of Phellinus sp. PL3 or phellinsin A isolated from the same as an effective component for prevention and treatment of cardiac circuit disease. https://doi.org/10.8080/1020040099339?urlappend=en

  50. Vicente M, Basilio A, Cabello A, Peláez F (2003) Microbial natural products as a source of antifungals. Clin Microbiol Infect 9:15–32. https://doi.org/10.1046/j.1469-0691.2003.00489.x

    Article  Google Scholar 

  51. Hossain MB, Tiwari BK, Gangopadhyay N, O’Donnell CP, Brunton NP, Rai DK (2014) Ultrasonic extraction of steroidal alkaloids from potato peel waste. Ultrason Sonochem 21:1470–1476. https://doi.org/10.1016/j.ultsonch.2014.01.023

    Article  Google Scholar 

  52. Liang S, McDonald AG, Coats ER (2015) Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture. Waste Manage 45:51–56. https://doi.org/10.1016/j.wasman.2015.02.004

    Article  Google Scholar 

  53. Guechi E-K, Hamdaoui O (2016) Evaluation of potato peel as a novel adsorbent for the removal of Cu(II) from aqueous solutions: equilibrium, kinetic, and thermodynamic studies. Desalination Water Treat 57:10677–10688. https://doi.org/10.1080/19443994.2015.1038739

    Article  Google Scholar 

  54. Bucciol F, Cravotto G (2022) The contribution of green chemistry to industrial organic synthesis. In: Protti S, Palmieri A (eds) Sustainable organic synthesis: tools and strategies. The Royal Society of Chemistry, pp 549–574

    Google Scholar 

  55. Miele M, Ielo L, Pillari V, Fernández M, Alcántara AR, Pace V (2022) Biomass-derived solvents. In: Protti S, Palmieri A (eds). Sustainable organic synthesis: tools and strategies. The Royal Society of Chemistry, Sustainable organic synthesis, pp 239–279

  56. Selva M, Fiorani G, Rigo D (2022) Supercritical solvents. In: Protti S, Palmieri A (eds) Sustainable organic synthesis: tools and strategies. The Royal Society of Chemistry, pp 280–312

    Google Scholar 

  57. Zweckmair T, Hell S, Klinger KM, Rosenau T, Potthast A, Böhmdorfer S (2017) Recycling of analytical grade solvents on a lab scale with a purpose-built temperature-controlled distillation unit. Org Process Res Dev 21:578–584. https://doi.org/10.1021/acs.oprd.7b00007

    Article  Google Scholar 

Download references

Funding

This study received funding from the National Research Foundation, South Africa (NRF, Grant No. 105889 and 112099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tukayi Kudanga.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Disclaimer

Any opinion, findings and conclusions or recommendations expressed in this article are those of the authors and therefore the NRF does not accept any liability in regard thereto.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemadziva, B., Ngubane, S., Matiza Ruzengwe, F. et al. Potato peels as feedstock for laccase-catalysed synthesis of phellinsin A. Biomass Conv. Bioref. 13, 13871–13882 (2023). https://doi.org/10.1007/s13399-021-02251-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02251-w

Keywords

Navigation