Skip to main content

Advertisement

Log in

Potato Peel Waste as an Economic Feedstock for PHA Production by Bacillus circulans

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Polymers of hydroxy alkanoates (PHA), also known as biodegradable, biocompatible plastic, are potential alternatives to petrochemical-based plastics. PHA is synthesized by microbes in their cytoplasm in the form of inclusion bodies in stress conditions such as nitrogen, oxygen, and phosphorus with excessive amounts of carbon. Sugar extracted from potato peel in the form of hydrolysate was employed as a carbon source for PHA production after acidic hydrolysis. The acid hydrolysis conditions are optimized for dilute acid concentrations and temperatures. The highest sugar-yielding condition (2% 15 min at 121 ℃) was used for submerged fermentation for PHA production by Bacillus circulans MTCC 8167. Fourier transform infrared spectroscopy, nuclear magnetic resonance, and differential scanning calorimetry were used for polymer characterization. Gas chromatography coupled with mass spectrometry confirmed the monomers such as hexadecenoic acid 3-hydroxy, methyl esters, pentadecanoic acid 14 methyl esters, and tetradecanoic acid 12- methyl esters. Crotonic acid assay was used for quantification of PHA and it was found highest (0.232 ± 0.04 g/L) at 37 °C and 36 h of incubation. Hence, potato peel waste could be a potential feedstock for waste to valuable production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Abdelraof, M., Hasanin, M. S., & El-Saied, H. (2019). Ecofriendly green conversion of potato peel wastes to high productivity bacterial cellulose. Carbohydrate Polymers, 211, 75–83. https://doi.org/10.1016/j.carbpol.2019.01.095

    Article  PubMed  CAS  Google Scholar 

  2. Abedini, A., Amiri, H., & Karimi, K. (2020). Efficient biobutanol production from potato peel wastes by separate and simultaneous inhibitors removal and pretreatment, Renewable Energy. Elsevier Ltd. https://doi.org/10.1016/j.renene.2020.06.112

  3. Ahmed, F., Yan, Z., & Bao, J. (2019). Dry biodetoxification of acid pretreated wheat straw for cellulosic ethanol fermentation. Bioresources and Bioprocessing, 6. https://doi.org/10.1186/s40643-019-0260-x

  4. Ahn, J., Jho, E. H., & Nam, K. (2015). Cupriavidus necator and its implication on the use of rice straw hydrolysates Effect of C / N ratio on polyhydroxyalkanoates ( PHA ) accumulation by Cupriavidus necator and its implication on the use of rice straw hydrolysates. https://doi.org/10.4491/eer.2015.055

  5. Andler, R., Pino, V., Moya, F., Soto, E., Valdés, C., & Andreeßen, C. (2021). Synthesis of poly-3-hydroxybutyrate (PHB) by Bacillus cereus using grape residues as sole carbon source. International Journal of Biobased Plastics, 3, 98–111. https://doi.org/10.1080/24759651.2021.1882049

    Article  CAS  Google Scholar 

  6. Arapoglou, D., Varzakas, T., Vlyssides, A., & Israilides, C. (2010). Ethanol production from potato peel waste (PPW). Waste Management, 30, 1898–1902. https://doi.org/10.1016/j.wasman.2010.04.017

    Article  PubMed  CAS  Google Scholar 

  7. Ben Atitallah, I., Antonopoulou, G., Ntaikou, I., Alexandropoulou, M., Nasri, M., Mechichi, T., & Lyberatos, G. (2019). On the evaluation of different saccharification schemes for enhanced bioethanol production from potato peels waste via a newly isolated yeast strain of Wickerhamomyces anomalus. Bioresource Technology, 289, 121614. https://doi.org/10.1016/j.biortech.2019.121614

    Article  PubMed  CAS  Google Scholar 

  8. BezirhanArikan, E., & Bilgen, H. D. (2019). Production of bioplastic from potato peel waste and investigation of its biodegradability. International Advanced Researches and Engineering Journal, 03, 93–97. https://doi.org/10.35860/iarej.420633

    Article  Google Scholar 

  9. Catherine, M., Guwy, A., & Massanet-nicolau, J. (2022). Bioresource technology reports effect of acetate concentration, temperature, pH and nutrient concentration on polyhydroxyalkanoates ( PHA ) production by glycogen accumulating organisms. Bioresource Technology Reports, 20, 101226. https://doi.org/10.1016/j.biteb.2022.101226

    Article  CAS  Google Scholar 

  10. Celikci, N., Dolaz, M., &Colakoglu, A. S. (2020). An environmentally friendly carton adhesive from acidic hydrolysis of waste potato starch. International Journal of Polymer Analysis and Characterization, 0, 1–16. https://doi.org/10.1080/1023666X.2020.1855047

  11. Chanasit, W., Hodgson, B., Sudesh, K., & Umsakul, K. (2016). Efficient production of polyhydroxyalkanoates (PHAs) from Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) as the sole carbon source. Bioscience, Biotechnology, and Biochemistry, 80, 1440–1450. https://doi.org/10.1080/09168451.2016.1158628

    Article  PubMed  CAS  Google Scholar 

  12. Chen, Y. J., Huang, Y. C., & Lee, C. Y. (2014). Production and characterization of medium-chain-length polyhydroxyalkanoates by Pseudomonas mosselii TO7. Journal of Bioscience and Bioengineering, 118, 145–152. https://doi.org/10.1016/j.jbiosc.2014.01.012

    Article  PubMed  CAS  Google Scholar 

  13. Chintagunta, A. D., Jacob, S., & Banerjee, R. (2016). Integrated bioethanol and biomanure production from potato waste. Waste Management, 49, 320–325. https://doi.org/10.1016/j.wasman.2015.08.010

    Article  PubMed  CAS  Google Scholar 

  14. Choonut, A., Prasertsan, P., Klomklao, S., & Sangkharak, K. (2020). Bacillus thermoamylovorans - related strain isolated from high temperature sites as potential producers of medium - chain - length polyhydroxyalkanoate ( mcl - PHA ). Current Microbiology, 77, 3044–3056. https://doi.org/10.1007/s00284-020-02118-9

    Article  PubMed  CAS  Google Scholar 

  15. Ciesielska, J. M., Dabrowska, D., Palasz, A. S., & Ciesielski, S. (2017). Medium - chain - length polyhydroxyalkanoates synthesis by Pseudomonas putida KT2440 relA / spoT mutant : Bioprocess characterization and transcriptome analysis. AMB Express. https://doi.org/10.1186/s13568-017-0396-z

    Article  Google Scholar 

  16. Colombo, B., Favini, F., Scaglia, B., Sciarria, T. P., Imporzano, G. D., Pognani, M., Alekseeva, A., Eisele, G., Cosentino, C., & Adani, F. (2017). Biotechnology for biofuels enhanced polyhydroxyalkanoate ( PHA ) production from the organic fraction of municipal solid waste by using mixed microbial culture. Biotechnology for Biofuels and Bioproducts, 1–15. https://doi.org/10.1186/s13068-017-0888-8

  17. Cueva-almendras, L. C. (2022). Production of polyhydroxyalkanoate by Bacillus thuringiensis Isolated from agricultural soils of Cascas-Peru. Brazilian Archives of Biology and Technology, 65, e22220107. https://doi.org/10.1590/1678-4324-2022220107

  18. Deshmukh, M., & Pande, A. (2022). Comparative Study for Production of biofuel from potato peel waste as feedstock by different enzymes. 11, 1–6. https://doi.org/10.35841/2329-6674.22.11.1000175

  19. Dinh, P., Minh, L., Trang, V., Minh, H., Thi, L., Phung, K., & Feng, D. (2022). Enrichment of hydrogen in product gas from a pilot-scale rice husk updraft gasification system. Carbon Resources Conversion, 5, 231–239. https://doi.org/10.1016/j.crcon.2022.07.003

    Article  CAS  Google Scholar 

  20. Evangeline, S., & Sridharan, T. B. (2019). Biosynthesis and statistical optimization of polyhydroxyalkanoate ( PHA ) produced by Bacillus cereus VIT-SSR1 and fabrication of biopolymer fi lms for sustained drug release. International Journal of Biological Macromolecules, 135, 945–958. https://doi.org/10.1016/j.ijbiomac.2019.05.163

    Article  PubMed  CAS  Google Scholar 

  21. Gao, C., Qi, Q., Madzak, C., Sze, C., & Lin, K. (2015). Exploring medium - chain - length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica. Journal of Industrial Microbiology and Biotechnology, 42, 1255–1262. https://doi.org/10.1007/s10295-015-1649-y

    Article  PubMed  CAS  Google Scholar 

  22. Hassan, M. A., Bakhiet, E. K., Ali, S. G., & Hussien, H. R. (2016). Production and characterization of polyhydroxybutyrate (PHB) produced by Bacillus sp. isolated from Egypt. Journal of Applied Pharmaceutical Science, 6, 46–51. https://doi.org/10.7324/JAPS.2016.60406

    Article  CAS  Google Scholar 

  23. Hiremath, L., Sura, N., & Angadi, S. (2015). Design, screening and microbial synthesis of biopolymers of Poly-Hydroxy-Butyrate (PHB) from low cost carbons. International Journal of Advanced Research, 3(2), 420–425. http://www.journalijar.com

  24. Hong, Z., Fen, X. U., Yu, W. U., Hong-hai, H. U., & Xiao-Feng, D. A. I. (2017). Progress of potato staple food research and industry development in China. 16, 2924–2932.https://doi.org/10.1016/S2095-3119(17)61736-2

  25. Joyline, M. (2019). Research Article Production and characterization of polyhydroxyalkanoates ( PHA ) by bacillus Megaterium strain JHA using inexpensive agro-industrial wastes Mascarenhas Joyline and Aruna K * 10, 33359–33374. https://doi.org/10.24327/IJRSR

  26. Khamkong, T., Penkhrue, W., Lumyong, S. (2022). Optimization of Production of Polyhydroxyalkanoates (PHAs) from Newly Isolated Ensifer sp. Strain HD34 by Response Surface Methodology. Processes 2022;10, 1632. https://doi.org/10.3390/pr10081632

  27. Khawla, B. J., Sameh, M., Imen, G., Donyes, F., Dhouha, G., Raoudha, E. G., & Oumèma, N. E. (2014). Potato peel as feedstock for bioethanol production: A comparison of acidic and enzymatic hydrolysis. Industrial Crops and Products, 52, 144–149. https://doi.org/10.1016/j.indcrop.2013.10.025

    Article  CAS  Google Scholar 

  28. Landhäusser, S. M., Chow, P. S., Turin Dickman, L., Furze, M. E., Kuhlman, I., Schmid, S., Wiesenbauer, J., Wild, B., Gleixner, G., Hartmann, H., Hoch, G., McDowell, N. G., Richardson, A. D., Richter, A., & Adams, H. D. (2018). Standardized protocols and procedures can precisely and accurately quantify non-structural carbohydrates. Tree Physiology, 38, 1764–1778. https://doi.org/10.1093/treephys/tpy118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Liang, S., McDonald, A. G., & Coats, E. R. (2014). Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture. Waste Management, 45, 51–56. https://doi.org/10.1016/j.wasman.2015.02.004

    Article  CAS  Google Scholar 

  30. Lima, M. de A., Andreou, R., Charalampopoulos, D., & Chatzifragkou, A. (2021). Supercritical carbon dioxide extraction of phenolic compounds from potato (Solanum tuberosum) peels. Applied Sciences, 11. https://doi.org/10.3390/app11083410

  31. Mahato, R. P., Kumar, S., & Singh, P. (2021). Optimization of growth conditions to produce sustainable polyhydroxyalkanoate bioplastic by pseudomonas aeruginosa EO1. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.711588

  32. Maheshwari, N., Kumar, M., Thakur, I. S., & Srivastava, S. (2018). Production, process optimization and molecular characterization of polyhydroxyalkanoate (PHA) by CO2 sequestering B. cereus SS105. Bioresource Technology, 254, 75–82. https://doi.org/10.1016/j.biortech.2018.01.002

    Article  PubMed  CAS  Google Scholar 

  33. Malakar, B., Das, D., & Mohanty, K. (2020). Optimization of glucose yield from potato and sweet lime peel waste through different pre-treatment techniques along with enzyme assisted hydrolysis towards liquid biofuel. Renewable Energy, 145, 2723–2732. https://doi.org/10.1016/j.renene.2019.08.037

    Article  CAS  Google Scholar 

  34. Martín, C., Christoph, J., Wei, M., Stagge, S., Xiong, S., & Jönsson, L. J. (2019). Industrial crops & products dilute-sulfuric acid pretreatment of de-starched cassava stems for enhancing the enzymatic convertibility and total glucan recovery. Industrial Crops and Products, 132, 301–310. https://doi.org/10.1016/j.indcrop.2019.02.037

    Article  CAS  Google Scholar 

  35. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  36. Narayankumar, S., Industries, K., & Krishnaswamy, V. G. (2020). Polyhyrdoxybutyrate production by Bacillus marcorestinctum using polyhyrdoxybutyrate production by Bacillus marcorestinctum using a cheaper substrate and its electrospinned blends with polymer. https://www.researchgate.net/publication/344167030

  37. Pan, L., Li, J., Wang, R., Wang, Yu., Lin, Q., Li, C., & Wang, Y. (2021). Biosynthesis of polyhydroxyalkanoate from food waste oil by Pseudomonas alcaligenes with simultaneous energy recovery from fermentation wastewater. Waste Management, 131, 268–276. https://doi.org/10.1016/j.wasman.2021.06.008

    Article  PubMed  CAS  Google Scholar 

  38. Porras, M. A., Cubitto, M. A., & Villar, M. A. (2014). Quantitative determination of intracellular PHA in Bacillus megaterium BBST4 strain Using Mid FTIR Spectroscopy. 1–4. https://doi.org/10.13140/RG.2.1.3920.2407

  39. Prakash, P., Lee, W.-H., Loo, C.-Y., Wong, H. S. J., & Parumasivam T. (2022). Advances in polyhydroxyalkanoate nanocarriers for effective drug delivery: An overview and challenges. Nanomaterials, 12, 175. https://doi.org/10.3390/nano12010175

  40. Raghu, M. G. H., & Divyashree, C. M. S. (2021). Statistical optimisation of polyhydroxyalkanoate production in Bacillus endophyticus using sucrose as sole source of carbon. Archives of Microbiology, 203, 5993–6005. https://doi.org/10.1007/s00203-021-02554-6

    Article  CAS  Google Scholar 

  41. Remedios, Y., & Domingues, L. (2023). Potato peels waste as a sustainable source for biotechnological production of biofuels: Process optimization. 155, 320–328.https://doi.org/10.1016/j.wasman.2022.11.007

  42. Sampaio, S. L., Petropoulos, S. A., Alexopoulos, A., Heleno, S. A., Santos-buelga, C., Barros, L., & Ferreira, I. C. F. R. (2020). Trends in Food Science & Technology Potato peels as sources of functional compounds for the food industry : A review. Trends in Food Science & Technology, 103, 118–129. https://doi.org/10.1016/j.tifs.2020.07.015

    Article  CAS  Google Scholar 

  43. Shah, K. R. (2012). FTIR analysis of polyhydroxyalkanoates by novel Bacillus sp. AS 3–2 from soil of Kadi region, North Gujarat, India. Journal Of Biochemical Technology, 3, 380–383.

    CAS  Google Scholar 

  44. Sluiter, J. B., Ruiz, R. O., Scarlata, C. J., Sluiter, A. D., & Templeton, D. W. (2010). Compositional analysis of lignocellulosic feedstocks. Review and description of methods. Journal of Agricultural and Food Chemistry58(16), 9043–9053. https://doi.org/10.1021/jf1008023

  45. Sriyapai, T., Chuarung, T., Kimbara, K., Samosorn, S., & Sriyapai, P. (2022). Production and optimization of polyhydroxyalkanoates (PHAs) from Paraburkholderia sp. PFN 29 under submerged fermentation. Electronic Journal of Biotechnology, 56, 1–11. https://doi.org/10.1016/j.ejbt.2021.12.003

    Article  CAS  Google Scholar 

  46. Tesfaw, A. A., & Tizazu, B. Z. (2021). Reducingsugarproductionfromteffstrawbiomassusingdilute sulfuric acid hydrolysis: Characterization and optimization using response surface methodology. International Journal of Biomaterials, 2021. https://doi.org/10.1155/2021/2857764

  47. Timung, R., Naik Deshavath, N., Goud, V. V., & Dasu, V. V. (2016). Effect of subsequent dilute acid and enzymatic hydrolysis on reducing sugar production from sugarcane bagasse and spent citronella biomass. Journal of Energy, 2016, 1–12. https://doi.org/10.1155/2016/8506214

    Article  CAS  Google Scholar 

  48. Valencia, A. I. S., Rojas, U., & Fajardo, C. (2021). Effect of C / N ratio on the PHA accumulation capability of microbial mixed culture fed with leachates from the organic fraction of municipal solid waste ( OFMSW). Journal of Water Process Engineering, 40. https://doi.org/10.1016/j.jwpe.2021.101975

  49. Vu, D. H., Wainaina, S., Taherzadeh, M. J., Åkesson, D., & Ferreira, J. A. (2021). Production of polyhydroxyalkanoates (PHAs) by Bacillus megaterium using food waste acidogenic fermentation-derived volatile fatty acids. Bioengineered, 12, 2480–2498. https://doi.org/10.1080/21655979.2021.1935524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Wang, J., Liu, S., Huang, J., Cui, R., Xu, Y., & Song, Z. (2023). Environmental Technology & Innovation Genetic engineering strategies for sustainable polyhydroxyalkanoate ( PHA ) production from carbon-rich wastes. Environmental Technology and Innovation, 30, 103069. https://doi.org/10.1016/j.eti.2023.103069

    Article  CAS  Google Scholar 

  51. Zhou, C., Jiang, W., Via, B. K., Fasina, O., & Han, G. (2015). Prediction of mixed hardwood lignin and carbohydrate content using. Carbohydrate Polymers, 121, 336–341. https://doi.org/10.1016/j.carbpol.2014.11.062

    Article  PubMed  CAS  Google Scholar 

  52. Zhou, W., Irene, D., Geurkink, B., Euverink, G. W., & Krooneman, J. (2022). Science of the Total Environment The impact of carbon to nitrogen ratios and pH on the microbial prevalence and polyhydroxybutyrate production levels using a mixed microbial starter culture. Science of the Total Environment, 811, 152341. https://doi.org/10.1016/j.scitotenv.2021.152341

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks to the funding agencies Department of Biotechnology (DBT) grant no. BT/RLF/Re-entry/40/2017 and Science and Engineering Research Board (SERB) file no. EEQ/2020/000614, Govt. of India for providing the research grant to carry out this work. Also, special thanks to Council of Scientific & Industrial Research (CSIR), Govt. of India, for fellowship of Ms. Sonika. Authors would also like to thanks Department of Chemistry, Delhi Technological University (DTU) for the support and providing testing facilities.

Funding

Present work is funded by DBT (SAN No. 102/IFD/SAN/1276/2019-20) and SERB (File No. EEQ/2020/000614), Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript, also confirm the contribution to the review article as follows: Experiment design and conceptualization of article: Sonika Kag and Rashmi Kataria; laboratory experiments and analysis: Sonika Kag; manuscript writing: Sonika Kag; Critically revised the work: Rashmi Kataria, Pravir Kumar, and Sonika Kag; Editing: Rashmi Kataria; Supervision: Pravir Kumar and Rashmi Kataria.

Corresponding author

Correspondence to Rashmi Kataria.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

All authors are agreed to participate in the present manuscript.

Consent for Publication

All authors have seen submitted version of manuscript and approved to publish.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kag, S., Kumar, P. & Kataria, R. Potato Peel Waste as an Economic Feedstock for PHA Production by Bacillus circulans. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04741-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04741-1

Keywords

Navigation