Skip to main content
Log in

A holistic review on application of green solvents and replacement study for conventional solvents

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The knowledge of green chemistry is instrumental in reducing the harmful and toxicity of the environment. The current environment demands that conventionally used petrochemical solvents should be replaced with the recently developed less harmful and less toxic green solvents. The potential applications of green chemical as solvents are required to study based on the green chemistry principles and the separation of solvents. In this review paper, the application of green chemicals was described for five green solvents such as cyclopentyl methyl ether (CPME), 2-methyl tetrahydrofuran (2-MeTHF), propylene carbonate, 1,3-propanediol, and ethyl lactate. The replacement study of conventional petrochemical solvents with these green solvents was discussed here. Based on the comparative studies, the green chemicals were found to be high potential solvents to replaced tetrahydrofuran (THF), dichloromethane (DCM), 1,4-dioxane, and diethyl ether in chemical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams TA, Seider WD (2015) Semicontinuous distillation for ethyl lactate production. AICHE J 61(3):857–866. https://doi.org/10.1002/aic.11585

    Article  Google Scholar 

  2. Aghaziarati M, Kazemeini M, Soltanieh M, Sahebdelfar S (2007) Evaluation of zeolites in production of tetrahydrofuran from 1,4-butanediol: performance tests and kinetic investigations. Ind Eng Chem Res 46(3):726–733. https://doi.org/10.1021/ie061062m

    Article  Google Scholar 

  3. Alcantara AR, de Maria PD (2018) Recent advances on the use of 2-methyltetrahydrofuran (2-MeTHF) in Biotransformations. Curr Green Chem 5(2):86–103. https://doi.org/10.2174/2213346105666180727100924

    Article  Google Scholar 

  4. Alder CM, Hayler JD, Henderson RK, Redman AM, Shukla L, Shuster LE, Sneddon HF (2016) Updating and further expanding GSK’s solvent sustainability guide. Green Chem 18(13):3879–3890. https://doi.org/10.1039/c6gc00611f

    Article  Google Scholar 

  5. Anastas PT, Warner JC (1998) Green Chemistry : recent advances in developing catalytic processes in environmentally-benign solvent systems. Oxford Science Publications, New York, pp 1–43

    Google Scholar 

  6. Andersson K, Holmström A, Sörvik E (1973) A comparison between different ways to obtain molecular weight distributions of PVC and a study on the anomalies of PVC in tetrahydrofuran solutions. Die Makromolekulare Chemie 166(1):247–264. https://doi.org/10.1002/macp.1973.021660122

    Article  Google Scholar 

  7. Antonucci V, Coleman J, Ferry JB, Johnson N, Mathe M, Scott JP, Xu J (2011) Toxicological assessment of 2-methyltetrahydrofuran and cyclopentyl methyl ether in support of their use in pharmaceutical chemical process development. Org Process Res Dev 15(4):939–941. https://doi.org/10.1021/op100303c

    Article  Google Scholar 

  8. Aparicio S, Alcalde R (2009) The green solvent ethyl lactate: an experimental and theoretical characterization. Green Chem 11(1):65–78. https://doi.org/10.1039/b811909k

    Article  MathSciNet  Google Scholar 

  9. Wagner J, Breitscheidel B, Bohn MA. Lank B, Alois K (2016) Tetrahydrofuran derivatives and use thereof as Plasticizer, 20160075671.

  10. Ashby EC, Laemmle JT (1968) Mechanisms of organometallic alkylation reactions. III. The mechanism of trimethylaluminum addition to benzophenone in diethyl ether. J Org Chem 33(9):3398–3401. https://doi.org/10.1021/jo01273a008

    Article  Google Scholar 

  11. Sharma SR (2015) Green Chemistry, Green Solvents and Alternative Techniques in Organic Synthesis SONALI R. SHARMA Green Chemistry, Green Solvents and Alternative Techniques in Organic Synthesis. Int J Chem Phys Sci 4:2319–6602. Retrieved from www.ijcps.org

  12. Aycock DF (2007) Solvent applications of 2-methyltetrahydrofuran in organometallic and biphasic reactions. Org Process Res Dev 11(1):156–159. https://doi.org/10.1021/op060155c

    Article  Google Scholar 

  13. Aznarez S, Postigo MA, Pedrosa GC, Acevedo IL, Katz M (1998) Densities, refractive indexes, and excess properties of mixing of the n-hexanol + ethanenitrile + dichloromethane ternary system at 25°C. J Solut Chem 27(10):949–964. https://doi.org/10.1023/A:1022667313669

    Article  Google Scholar 

  14. Azzena U, Carraro M, Pisano L, Monticelli S, Bartolotta R, Pace V (2019) Cyclopentyl Methyl Ether: An Elective Ecofriendly Ethereal Solvent in Classical and Modern Organic Chemistry. ChemSusChem 12(1):40–70. https://doi.org/10.1002/cssc.201801768

    Article  Google Scholar 

  15. Bale AS, Barone S, Scott CS, Cooper GS (2011) A review of potential neurotoxic mechanisms among three chlorinated organic solvents. Toxicol Appl Pharmacol 255(1):113–126. https://doi.org/10.1016/j.taap.2011.05.008

    Article  Google Scholar 

  16. Barwick VJ (1997) Strategies for solvent selection - A literature review. TrAC Trends Analy Chem 16(6):293–309. https://doi.org/10.1016/S0165-9936(97)00039-3

    Article  Google Scholar 

  17. Bayardon J, Holz J, Schäffner B, Andrushko V, Verevkin S, Preetz A, Börner A (2007) Propylene carbonate as a solvent for asymmetric hydrogenations. Angew Chem Int Ed 46(31):5971–5974. https://doi.org/10.1002/anie.200700990

    Article  Google Scholar 

  18. Beattie C, North M, Villuendas P (2011) Proline-catalysed amination reactions in cyclic carbonate solvents. Molecules 16(4):3420–3432. https://doi.org/10.3390/molecules16043420

    Article  Google Scholar 

  19. Bell C, McDonough J, Houston KS, Gerber K (2011) Stable Isotope Probing to Confirm Field-Scale Co-Metabolic Biodegradation of 1,4-Dioxane. Remediat J 26(2):101–108. https://doi.org/10.1002/rem

    Article  Google Scholar 

  20. Bennett JS, Charles KL, Miner MR, Heuberger CF, Spina EJ, Bartels MF, Foreman T (2009) Ethyl lactate as a tunable solvent for the synthesis of aryl aldimines. Green Chem 11(2):166–168. https://doi.org/10.1039/b817379f

    Article  Google Scholar 

  21. Bermejo DV, Ibáñez E, Reglero G, Fornari T (2016) Effect of cosolvents (ethyl lactate, ethyl acetate and ethanol) on the supercritical CO 2 extraction of caffeine from green tea. J Supercrit Fluids 107:507–512. https://doi.org/10.1016/j.supflu.2015.07.008

    Article  Google Scholar 

  22. Bermejo DV, Mendiola JA, Ibáñez E, Reglero G, Fornari T (2015) Pressurized liquid extraction of caffeine and catechins from green tea leaves using ethyl lactate, water and ethyl lactate + water mixtures. Food Bioprod Process 96:106–112. https://doi.org/10.1016/j.fbp.2015.07.008

    Article  Google Scholar 

  23. Beydoun K, Doucet H (2011) Cyclopentyl methyl ether: An alternative solvent for palladium-catalyzed direct arylation of heteroaromatics. ChemSusChem 4(4):526–534. https://doi.org/10.1002/cssc.201000405

    Article  Google Scholar 

  24. Bhattacharyya SK, Nag SN (2007) Catalytic synthesis of ethyl propionate from ethylene, carbon monoxide and ethanol at high pressure. J Appl Chem 12(4):182–190. https://doi.org/10.1002/jctb.5010120409

    Article  Google Scholar 

  25. Bhatte KD, Sawant DN, Pinjari DV, Pandit AB, Bhanage BM (2012) One pot green synthesis of nano sized zinc oxide by sonochemical method. Mater Lett 77:93–95. https://doi.org/10.1016/j.matlet.2012.03.012

    Article  Google Scholar 

  26. Bisz E, Szostak M (2018) 2-Methyltetrahydrofuran: A Green Solvent for Iron-Catalyzed Cross-Coupling Reactions. ChemSusChem 11(8):1290–1294. https://doi.org/10.1002/cssc.201800142

    Article  Google Scholar 

  27. Bovill JG (2008) Inhalation anaesthesia: From diethyl ether to xenon. Handb Exp Pharmacol 182:121–142. https://doi.org/10.1007/978-3-540-74806-9-6

    Article  Google Scholar 

  28. Cai CM, Zhang T, Kumar R, Wyman CE (2013) THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chem 15(11):3140–3145. https://doi.org/10.1039/c3gc41214h

    Article  Google Scholar 

  29. Campos Molina MJ, Mariscal R, Ojeda M, López Granados M (2012) Cyclopentyl methyl ether: A green co-solvent for the selective dehydration of lignocellulosic pentoses to furfural. Bioresour Technol 126:321–327. https://doi.org/10.1016/j.biortech.2012.09.049

    Article  Google Scholar 

  30. Capello C, Fischer U, Hungerbühler K (2007) What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem 9(9):927–934. https://doi.org/10.1039/b617536h

    Article  Google Scholar 

  31. Caropreso FE, Kreuz DF (1977) United States Patent: Production of Tetrahydrofuran. (19), 73–76. https://doi.org/10.1016/j.(73)

  32. Carter B, Gilcrease PC, Menkhaus TJ (2011) Removal and recovery of furfural, 5-hydroxymethylfurfural, and acetic acid from aqueous solutions using a soluble polyelectrolyte. Biotechnol Bioeng 108(9):2046–2052. https://doi.org/10.1002/bit.23153

    Article  Google Scholar 

  33. Chemat F, Vian MA, Cravotto G (2012) Green extraction of natural products: Concept and principles. Int J Mol Sci 13(7):8615–8627. https://doi.org/10.3390/ijms13078615

    Article  Google Scholar 

  34. Clegg W, Harrington RW, North M, Pizzato F, Villuendas P (2010) Cyclic carbonates as sustainable solvents for proline-catalysed aldol reactions. Tetrahedron Asymmetry 21(9–10):1262–1271. https://doi.org/10.1016/j.tetasy.2010.03.051

    Article  Google Scholar 

  35. Corley RA, Mendrala AL, Smith FA, Staats DA, Gargas ML, Conolly RB, Andersen ME, Reitz RH (1990) Development of a physiologically based pharmacokinetic model for chloroform. Toxicol Appl Pharmacol 103(3):512–527. https://doi.org/10.1016/0041-008X(90)90324-N

    Article  Google Scholar 

  36. de Gonzalo G, Alcántara AR, Domínguez de María P (2019) Cyclopentyl Methyl Ether (CPME): A Versatile Eco-Friendly Solvent for Applications in Biotechnology and Biorefineries. ChemSusChem 12(10):2083–2097. https://doi.org/10.1002/cssc.201900079

    Article  Google Scholar 

  37. de Jesus SS, Ferreira GF, Fregolente LV, Maciel Filho R (2018) Laboratory extraction of microalgal lipids using sugarcane bagasse derived green solvents. Algal Res 35(April):292–300. https://doi.org/10.1016/j.algal.2018.09.001

    Article  Google Scholar 

  38. Delgado P, Sanz MT, Beltrán S (2007) Isobaric vapor-liquid equilibria for the quaternary reactive system: Ethanol + water + ethyl lactate + lactic acid at 101.33 kPa. Fluid Phase Equilib 255(1):17–23. https://doi.org/10.1016/j.fluid.2007.03.022

    Article  Google Scholar 

  39. Demire Y (2015) Sustainability and Economic Analysis of Propylene Carbonate and Polypropylene Carbonate Production Processes Using CO2 and Propylene Oxide. J Chem Eng Process Technology 06(03). https://doi.org/10.4172/2157-7048.1000236

  40. Derosa CT, Wilbur S, Holler J, Richter P, Stevens YW (1996) Health evaluation of 1,4-dioxane. Toxicol Ind Health 12(1):1–43. https://doi.org/10.1177/074823379601200101

    Article  Google Scholar 

  41. Duan ZQ, Hu F (2013) Efficient synthesis of phosphatidylserine in 2-methyltetrahydrofuran. J Biotechnol 163(1):45–49. https://doi.org/10.1016/j.jbiotec.2012.10.022

    Article  Google Scholar 

  42. Dunn PJ (2012) The importance of Green Chemistry in Process Research and Development. Chem Soc Rev 41(4):1452–1461. https://doi.org/10.1039/c1cs15041c

    Article  Google Scholar 

  43. Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Progress Polymr Sci (Oxford) 26(9):1605–1688. https://doi.org/10.1016/S0079-6700(01)00027-2

    Article  Google Scholar 

  44. Fowles J, Boatman R, Bootman J, Lewis C, Morgott D, Rushton E, van Rooij J, Banton M (2013) A review of the toxicological and environmental hazards and risks of tetrahydrofuran. Crit Rev Toxicol 43(10):811–828. https://doi.org/10.3109/10408444.2013.836155

    Article  Google Scholar 

  45. Fuh CB, Lai M, Tsai HY, Chang CM (2005) Impurity analysis of 1,4-dioxane in nonionic surfactants and cosmetics using headspace solid-phase microextraction coupled with gas chromatography and gas chromatography-mass spectrometry. J Chromatogr A 1071(1–2):141–145. https://doi.org/10.1016/j.chroma.2004.09.012

    Article  Google Scholar 

  46. Gaber Y, Törnvall U, Kumar MA, Ali Amin M, Hatti-Kaul R (2011) HPLC-EAT (Environmental Assessment Tool): A tool for profiling safety, health and environmental impacts of liquid chromatography methods. Green Chem 13(8):2021–2025. https://doi.org/10.1039/c0gc00667j

    Article  Google Scholar 

  47. Gao WL, Liu H, Li N, Zong MH (2012) Regioselective enzymatic undecylenoylation of 8-chloroadenosine and its analogs with biomass-based 2-methyltetrahydrofuran as solvent. Bioresour Technol 118:82–88. https://doi.org/10.1016/j.biortech.2012.04.104

    Article  Google Scholar 

  48. Gao ZW, Wang SF, Xia CG (2009) Synthesis of propylene carbonate from urea and 1,2-propanediol. Chin Chem Lett 20(2):131–135. https://doi.org/10.1016/j.cclet.2008.10.038

    Article  Google Scholar 

  49. Gee N, Shinsaka K, Dodelet JP, Freeman GR (1986) Dielectric constant against temperature for 43 liquids. J Chem Thermodyn 18(3):221–234. https://doi.org/10.1016/0021-9614(86)90050-9

    Article  Google Scholar 

  50. Gloor CS, Dénès F, Renaud P (2017) Hydrosulfonylation Reaction with Arenesulfonyl Chlorides and Tetrahydrofuran: Conversion of Terminal Alkynes into Cyclopentylmethyl Sulfones. Angew Chem Int Ed 56(43):13329–13332. https://doi.org/10.1002/anie.201707791

    Article  Google Scholar 

  51. Gomez D (2019) ( 12 ) United States Patent: US10344247 B2. US Patent, 2.

  52. Haas T, Jaeger B, Weber R, Mitchell SF, King CF (2005) New diol processes: 1,3-propanediol and 1,4-butanediol. Appl Catal A Gen 280(1):83–88. https://doi.org/10.1016/j.apcata.2004.08.027

    Article  Google Scholar 

  53. Haque S, Khan MZH, Roy BC, Uddin H (2013) Separation of Acetic Acid from Aqueous Solution using Various Organic Solvents. J Sci Technol 5(2) Retrieved from https://publisher.uthm.edu.my/ojs/index.php/JST/article/view/655

  54. Müller H (2005) Tetra Hydro Furan. Ullman’s Encycl Indust Chem 18:84–89. https://doi.org/10.1007/3-540-27342-5_1

    Article  Google Scholar 

  55. Hongling L, Rongjiao Z, Wei X, Yanfen L, Yongju S, Yiling T (2011) Vapor-liquid equilibrium data of the carbon dioxide + ethyl butyrate and carbon dioxide + propylene carbonate systems at pressures from (1.00 to 13.00) MPa and temperatures from (313.0 to 373.0) K. J Chem Eng Data 56(4):1148–1157. https://doi.org/10.1021/je101086r

    Article  Google Scholar 

  56. Hu CC, Chiu PH, Wang SJ, Cheng SH (2015) Isobaric vapor-liquid equilibria for binary systems of diethyl carbonate + propylene carbonate, diethyl carbonate + propylene glycol, and ethanol + propylene carbonate at 101.3 kPa. J Chem Eng Data 60(5):1487–1494. https://doi.org/10.1021/acs.jced.5b00064

    Article  Google Scholar 

  57. Hu YD, Zong MH, Li N (2016) Enzymatic synthesis and anti-oxidative activities of plant oil-based ascorbyl esters in 2-methyltetrahydrofuran-containing mixtures. Biocataly Biotransform 34(4):181–188. https://doi.org/10.1080/10242422.2016.1247820

    Article  Google Scholar 

  58. Huang S, Liu S, Li J, Zhao N, Wei W, Sun Y (2007) Modified zinc oxide for the direct synthesis of propylene carbonate from propylene glycol and carbon dioxide. Catal Lett 118(3–4):290–294. https://doi.org/10.1007/s10562-007-9193-7

    Article  Google Scholar 

  59. Jad YE, Acosta GA, Khattab SN, De La Torre BG, Govender T, Kruger HG et al (2016) 2-Methyltetrahydrofuran and cyclopentyl methyl ether for green solid-phase peptide synthesis. Amino Acids 48(2):419–426. https://doi.org/10.1007/s00726-015-2095-x

    Article  Google Scholar 

  60. Jeffries Wyman J (1933) Dielectric Constants: Ethanol—Diethyl Ether and Urea—Water Solutions between 0 and 50°. J Am Chem Soc 55(1):4116–4121. https://doi.org/10.1021/ja01337a029

    Article  Google Scholar 

  61. Jeong WJ, Cho HK, Lim JS (2016) Vapor-liquid equilibria for the binary mixtures of methanol+cyclopentyl methyl ether (CPME). Korean J Chem Eng 33(10):2961–2967. https://doi.org/10.1007/s11814-016-0145-z

    Article  Google Scholar 

  62. Jessop PG (2011a) Searching for green solvents. Green Chem 13(6):1391–1398. https://doi.org/10.1039/c0gc00797h

    Article  Google Scholar 

  63. Jessop PG (2011b) Searching for green solvents. Green Chem 13(6):1391–1398. https://doi.org/10.1039/c0gc00797h

    Article  Google Scholar 

  64. Jose RR, Brown JE, Polido KE, Omenetto FG, Kaplan DL (2015) Polyol-Silk Bioink Formulations as Two-Part Room-Temperature Curable Materials for 3D Printing. ACS Biomater Sci Eng 1(9):780–788. https://doi.org/10.1021/acsbiomaterials.5b00160

    Article  Google Scholar 

  65. Kanepaka J, Asano T, Masamune S (1970) New Process for Production of Tetrhydrofuran. Ind Eng Chem 62(4):24–32. https://doi.org/10.1021/ie50724a005

    Article  Google Scholar 

  66. Suprenant KS (2012) Dioxane. Ullman’s Encycl Indust Chem 11:309–314. https://doi.org/10.1002/14356007.a08

    Article  Google Scholar 

  67. Kim DH, Whitaker JB, Li Z, van Hest MFAM, Zhu K (2018) Outlook and Challenges of Perovskite Solar Cells toward Terawatt-Scale Photovoltaic Module Technology. Joule 2(8):1437–1451. https://doi.org/10.1016/j.joule.2018.05.011

    Article  Google Scholar 

  68. Kim SH, Kwak SY, Suzuki T (2006) Photocatalytic degradation of flexible PVC/TiO2 nanohybrid as an eco-friendly alternative to the current waste landfill and dioxin-emitting incineration of post-use PVC. Polymer 47(9):3005–3016. https://doi.org/10.1016/j.polymer.2006.03.015

    Article  Google Scholar 

  69. Kimura ET, Ebert DM, Dodge PW (1971) Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol Appl Pharmacol 19(4):699–704. https://doi.org/10.1016/0041-008X(71)90301-2

    Article  Google Scholar 

  70. Kiwan AM (1997) Use of dichloromethane with dithizone as an alternative solvent to carbon tetrachloride restricted by Montreal Protocol. Talanta 44(5):947–950. https://doi.org/10.1016/S0039-9140(96)02135-2

    Article  Google Scholar 

  71. Koinecke A, Kreuzig R, Bahadir M, Siebers J, Nolting HG (1994) Investigations on the substitution of dichloromethane in pesticide residue analysis of plant materials. Fresenius J Anal Chem 349(4):301–305. https://doi.org/10.1007/BF00323208

    Article  Google Scholar 

  72. Kua YL, Gan S, Morris A, Ng HK (2016) Ethyl lactate as a potential green solvent to extract hydrophilic (polar) and lipophilic (non-polar) phytonutrients simultaneously from fruit and vegetable by-products. Sustain Chem Pharm 4:21–31. https://doi.org/10.1016/j.scp.2016.07.003

    Article  Google Scholar 

  73. Kunaver M, Medved S, Čuk N, Jasiukaityte E, Poljanšek I, Strnad T (2010) Application of liquefied wood as a new particle board adhesive system. Bioresour Technol 101(4):1361–1368. https://doi.org/10.1016/j.biortech.2009.09.066

    Article  Google Scholar 

  74. Kurian JV (2005) A new polymer platform for the future - Sorona® from corn derived 1,3-propanediol. J Polym Environ 13(2):159–167. https://doi.org/10.1007/s10924-005-2947-7

    Article  Google Scholar 

  75. Kurosaka T, Maruyama H, Naribayashi I, Sasaki Y (2008) Production of 1,3-propanediol by hydrogenolysis of glycerol catalyzed by Pt/WO3/ZrO2. Catal Commun 9(6):1360–1363. https://doi.org/10.1016/j.catcom.2007.11.034

    Article  Google Scholar 

  76. Probst KV, Wales MD, Rezac ME, Vadlani PV (2017) Evaluation of green solvents: oil extraction from oleaginous yeast Lipomyces starkeyi using cyclopentyl methyl ether (CPME). Biotechnol Process 33(04):1096–1103. https://doi.org/10.1002/btpr

    Article  Google Scholar 

  77. Lai HS, Lin YF, Tu CH (2014) Isobaric (vapor + liquid) equilibria for the ternary system of (ethanol + water + 1,3-propanediol) and three constituent binary systems at P = 101.3 kPa. J Chem Thermodyn 68:13–19. https://doi.org/10.1016/j.jct.2013.08.020

    Article  Google Scholar 

  78. Latona DF (2019) Kinetics and Mechanism of Propane-1 , 3-diol Oxidation by Mn ( VII ) in Aqueous Medium. 2(3), 225–233. https://doi.org/10.29088/SAMI/AJCA.2019.2.225233

  79. Lee CS, Aroua MK, Daud WMAW, Cognet P, Pérès-Lucchese Y, Fabre PL, Reynes O, Latapie L (2015) A review: Conversion of bioglycerol into 1,3-propanediol via biological and chemical method. Renew Sust Energ Rev 42:235–244. https://doi.org/10.1016/j.rser.2014.10.033

    Article  Google Scholar 

  80. Lenden P, Ylioja PM, González-Rodríguez C, Entwistle DA, Willis MC (2011) Replacing dichloroethane as a solvent for rhodium-catalysed intermolecular alkyne hydroacylation reactions: The utility of propylene carbonate. Green Chem 13(8):1980–1982. https://doi.org/10.1039/c1gc15293a

    Article  Google Scholar 

  81. Li CH (2010) Recovery of aniline from wastewater by nitrobenzene extraction enhanced with salting-out effect. Biomed Environ Sci 23(3):208–212. https://doi.org/10.1016/S0895-3988(10)60054-2

    Article  Google Scholar 

  82. Li W, Waldkirch JP, Zhang X (2002) Chiral C2-symmetric ligands with 1,4-dioxane backbone derived from tartrates: Syntheses and applications in asymmetric hydrogenation. J Org Chem 67(22):7618–7623. https://doi.org/10.1021/jo020250t

    Article  Google Scholar 

  83. Lontoh S, DiSpirito AA, Semrau JD (1999) Dichloromethane and trichloroethylene inhibition of methane oxidation by the membrane-associated methane monooxygenase of Methylosinus trichosporium OB3b. Arch Microbiol 171(5):301–308. https://doi.org/10.1007/s002030050714

    Article  Google Scholar 

  84. Lu XB, Liang B, Zhang YJ, Tian YZ, Wang YM, Bai CX, Wang H, Zhang R (2004) Asymmetric Catalysis with CO2: Direct Synthesis of Optically Active Propylene Carbonate from Racemic Epoxides. J Am Chem Soc 126(12):3732–3733. https://doi.org/10.1021/ja049734s

    Article  Google Scholar 

  85. Malinowski JJ (1999) Evaluation of liquid extraction potentials for downstream separation of 1,3-propanediol. Biotechnol Tech 13(2):127–130. https://doi.org/10.1023/A:1008858903613

    Article  Google Scholar 

  86. Mathuni T, Kim JI, Park SJ (2011) Phase equilibrium and physical properties for the purification of propylene carbonate (PC) and γ-butyrolactone (GBL). J Chem Eng Data 56(1):89–96. https://doi.org/10.1021/je100803e

    Article  Google Scholar 

  87. Maximiano P, Mendes JP, Mendonça PV, Abreu CMR, Guliashvili T, Serra AC, Coelho JFJ (2015) Cyclopentyl methyl ether: A new green co-solvent for supplemental activator and reducing agent atom transfer radical polymerization. J Polym Sci A Polym Chem 53(23):2722–2729. https://doi.org/10.1002/pola.27736

    Article  Google Scholar 

  88. Mcculloch A, Midgley PM (1996) The production and global distribution of emissions of trichloroethene, tetrachloroethene and dichloromethane over the period 1988-1992. Atmos Environ 30(4):601–608. https://doi.org/10.1016/1352-2310(09)50032-5

    Article  Google Scholar 

  89. Mehdi H, Fábos V, Tuba R, Bodor A, Mika LT, Horváth IT (2008) Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: From sucrose to levulinic acid, γ-valerolactone, 1,4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes. Springer (Online) 48(1–4):49–54. https://doi.org/10.1007/s11244-008-9047-6

    Article  Google Scholar 

  90. Moghadassi AR, Bagheripour E, Hosseini SM (2017) Investigation of the effect of tetrahydrofuran and acetone as cosolvents in acrylonitrile–butadiene–styrene–based nanofiltration membranes. J Appl Polym Sci 134(26):1–6. https://doi.org/10.1002/app.44993

    Article  Google Scholar 

  91. Mohammad A, Inamuddin (2012) Green Solvents. Springer, (September). https://doi.org/10.5281/zenodo.893346

  92. Mohanan P, Kapilan N, Reddy RP (2003) Effect of diethyl ether on the performance and emission of A4 - Sdi diesel engine. SAE Techn Pap 724. https://doi.org/10.4271/2003-01-0760

  93. Monticelli S, Castoldi L, Murgia I, Senatore R, Mazzeo E, Wackerlig J, Urban E, Langer T, Pace V (2017) Recent advancements on the use of 2-methyltetrahydrofuran in organometallic chemistry. Monatshefte Fur Chemie 148(1):37–48. https://doi.org/10.1007/s00706-016-1879-3

    Article  Google Scholar 

  94. Muhuri, P. K. (1995). and 318.15. (11), 582–585.

  95. Muhuri PK, Das B, Hazra DK (1996) Viscosities and excess molar volumes of binary mixtures of propylene carbonate with tetrahydrofuran and methanol at different temperatures. J Chem Eng Data 41(6):1473–1476. https://doi.org/10.1021/je960196b

    Article  Google Scholar 

  96. Mutti FG, Kroutil W (2012) Asymmetric bio-amination of ketones in organic solvents. Adv Synth Catal 354(18):3409–3413. https://doi.org/10.1002/adsc.201200900

    Article  Google Scholar 

  97. Nagaosa Y, Sana T (1984) Dichloromethane as a solvent for extraction-polarographic determination of nickel as its dimethylglyoximate. Anal Lett 17(4):243–249. https://doi.org/10.1080/00032718408065283

    Article  Google Scholar 

  98. Nardi M, Cano NH, De Nino A, Di Gioia ML, Maiuolo L, Oliverio M et al (2017) An eco-friendly tandem tosylation/Ferrier N-glycosylation of amines catalyzed by Er(OTf)3 in 2-MeTHF. Tetrahedron Lett 58(18):1721–1726. https://doi.org/10.1016/j.tetlet.2017.03.047

    Article  Google Scholar 

  99. Nikles SM, Piao M, Lane AM, Nikles DE (2001) Ethyl lactate: A green solvent for magnetic tape coating. Green Chem 3(3):109–113. https://doi.org/10.1039/b101147m

    Article  Google Scholar 

  100. North M, Omedes-Pujol M (2010) Kinetics and mechanism of vanadium catalysed asymmetric cyanohydrin synthesis in propylene carbonate. Beilstein J Org Chem 6(Scheme 1):1043–1055. https://doi.org/10.3762/bjoc.6.119

    Article  Google Scholar 

  101. Grimalt O, A. A. J. J (2013) Monitoring of hazardous waste dumps by the study of metals and solvent-soluble organic chemicals. J Chem Inf Model 53(9):1689–1699. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  102. Otson R, Williams DT, Bothwell PD (1981) Dichloromethane levels in air after application of paint removers. Am Ind Hyg Assoc J 42(1):56–60. https://doi.org/10.1080/15298668191419352

    Article  Google Scholar 

  103. Pace V, Hoyos P, Castoldi L, Domínguez De María P, Alcántara AR (2012) 2-Methyltetrahydrofuran (2-MeTHF): A biomass-derived solvent with broad application in organic chemistry. ChemSusChem 5(8):1369–1379. https://doi.org/10.1002/cssc.201100780

    Article  Google Scholar 

  104. Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: Production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenergy 32(1):60–71. https://doi.org/10.1016/j.biombioe.2007.06.007

    Article  Google Scholar 

  105. Papanikolaou S, Ruiz-Sanchez P, Pariset B, Blanchard F, Fick M (2000) High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 77(2–3):191–208. https://doi.org/10.1016/S0168-1656(99)00217-5

    Article  Google Scholar 

  106. Parsana VM, Parikh SP (2015) Need for Vapour-Liquid Equilibrium Data Generation of Systems Involving Green Solvents. 5(6):55–62

  107. Parsana VM, Parikh SP (2018, 2019) Isobaric Vapour–Liquid Equilibrium Data Measurement for a Binary System of Green Solvent 2-Methyltetrahydrofuran and Acetic acid at 101.3 kPa. Arab J Sci Eng. https://doi.org/10.1007/s13369-018-3638-8

  108. Payne R, Theodorou IE (1972) Dielectric properties and relaxation in ethylene carbonate and propylene carbonate. J Phys Chem 76(20):2892–2900. https://doi.org/10.1021/j100664a019

    Article  Google Scholar 

  109. Peña-Tejedor S, Murga R, Sanz MT, Beltrán S (2005) Vapor-liquid equilibria and excess volumes of the binary systems ethanol + ethyl lactate, isopropanol + isopropyl lactate and n-butanol + n-butyl lactate at 101.325 kPa. Fluid Phase Equilib 230(1–2):197–203. https://doi.org/10.1016/j.fluid.2005.02.015

    Article  Google Scholar 

  110. Pereira CSM, Silva VMTM, Rodrigues AE (2011) Ethyl lactate as a solvent: Properties, applications and production processes - A review. Green Chem 13(10):2658–2671. https://doi.org/10.1039/c1gc15523g

    Article  Google Scholar 

  111. Pistikopoulos EN, Stefanis SK (1998) Optimal solvent design for environmental impact minimization. Comput Chem Eng 22(6):717–733. https://doi.org/10.1016/S0098-1354(97)00255-X

    Article  Google Scholar 

  112. Podkolzin SG, Stangland EE, Jones ME, Peringer E, Lercher JA (2007) Methyl chloride production from methane over lanthanum-based catalysts. J Am Chem Soc 129(9):2569–2576. https://doi.org/10.1021/ja066913w

    Article  Google Scholar 

  113. Press P, Britain G (1974) Totrabedron Letters No. 12, pp 967-970, 1974. (12), 967–970. https://doi.org/10.1016/j.enconman.2018.10.064

  114. Qi DH, Chen H, Geng LM, Bian YZ (2011) Effect of diethyl ether and ethanol additives on the combustion and emission characteristics of biodiesel-diesel blended fuel engine. Renew Energy 36(4):1252–1258. https://doi.org/10.1016/j.renene.2010.09.021

    Article  Google Scholar 

  115. Raber DJ, Guida WC (1976) Tetrabutylammonium Borohydride. Borohydride Reductions in Dichloromethane. J Org Chem 41(4):690–696. https://doi.org/10.1021/jo00866a022

    Article  Google Scholar 

  116. Rapinel V, Claux O, Abert-Vian M, McAlinden C, Bartier M, Patouillard N et al (2020) 2-methyloxolane (2-MeOx) as sustainable lipophilic solvent to substitute hexane for green extraction of natural products. Properties, applications, and perspectives. Molecules 25(15). https://doi.org/10.3390/molecules25153417

  117. Rattan VK, Gill BK, Kapoor S (2008) Isobaric Vapor-Liquid Equilibrium Data for Binary Mixture of 2-Methyltetrahydrofuran and Cumene. Eng Technol 143521(11):41–44

    Google Scholar 

  118. Raus V, Šturcová A, Dybal J, Šlouf M, Vacková T, Šálek P, Kobera L, Vlček P (2012) Activation of cellulose by 1,4-dioxane for dissolution in N,N-dimethylacetamide/LiCl. Cellulose 19(6):1893–1906. https://doi.org/10.1007/s10570-012-9779-0

    Article  Google Scholar 

  119. Resa JM, Cepeda EA, Goenaga JM, Ramos Á, Aguirre S, Urbano C (2010) Density, refractive index, speed of sound at 298.15 K, and vapor-liquid equilibrium at 101.3 kPa for binary mixtures of methanol + ethyl lactate and 1-propanol + ethyl lactate. J Chem Eng Data 55(2):1017–1021. https://doi.org/10.1021/je900481e

    Article  Google Scholar 

  120. Resa JM, Goenaga JM, Sánchez-Ruiz AI, Iglesias M (2006) Density, refractive index, speed of sound at 298.15 K, and vapor-liquid equilibria at 101.3 kPa for binary mixtures of ethyl acetate + ethyl lactate and methyl acetate + ethyl lactate. J Chem Eng Data 51(4):1294–1299. https://doi.org/10.1021/je060052p

    Article  Google Scholar 

  121. Rudan-Tasic D, Klofutar C (2005) Apparent specific polarization and dipole moment of some poly(oxyethylene) glycols in 1,4-dioxane and benzene solutions at 298.15 K. Monatshefte Fur Chemie 136(7):1171–1182. https://doi.org/10.1007/s00706-005-0323-x

    Article  Google Scholar 

  122. Saerens SMG, Delvaux F, Verstrepen KJ, Van Dijck P, Thevelein JM, Delvaux FR (2008) Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol 74(2):454–461. https://doi.org/10.1128/AEM.01616-07

    Article  Google Scholar 

  123. Sanz MT, Blanco B, Beltràn S, Cabezas JL, Coca J (2001) Vapor liquid equilibria of binary and ternary systems with water, 1,3-propanediol, and glycerol. J Chem Eng Data 46(3):635–639. https://doi.org/10.1021/je000118v

    Article  Google Scholar 

  124. Saxena RK, Anand P, Saran S, Isar J (2009) Microbial production of 1,3-propanediol: Recent developments and emerging opportunities. Biotechnol Adv 27(6):895–913. https://doi.org/10.1016/j.biotechadv.2009.07.003

    Article  Google Scholar 

  125. Scalia S, Guarneri M, Menegatti E (1990) Determination of 1,4-dioxane in cosmetic products by high-performance liquid chromatography. Analyst 115(7):929–931. https://doi.org/10.1039/AN9901500929

    Article  Google Scholar 

  126. Scaratti G, De Noni Júnior A, José HJ, de Fatima Peralta Muniz Moreira R (2020) 1,4-Dioxane removal from water and membrane fouling elimination using CuO-coated ceramic membrane coupled with ozone. Environ Sci Pollut Res 27:22144–22154. https://doi.org/10.1007/s11356-019-07497-6

    Article  Google Scholar 

  127. Schäffner B, Andrushko V, Holz J, Verevkin SP, Börner A (2008) Rh-catalyzed asymmetric hydrogenation of unsaturated lactate precursors in propylene carbonate. ChemSusChem 1(11):934–940. https://doi.org/10.1002/cssc.200800157

    Article  Google Scholar 

  128. Schiffman SS, Nagle HT (1992) Effect of environmental pollutants on taste and smell. Otolaryngol Head Neck Surg 106(6):693–700. https://doi.org/10.1177/019459989210600613

    Article  Google Scholar 

  129. Scott RS, Frame SR, Ross PE, Loveless SE, Kennedy GL (2005) Inhalation toxicity of 1,3-propanediol in the rat. Inhal Toxicol 17(9):487–493. https://doi.org/10.1080/08958370590964485

    Article  Google Scholar 

  130. Sengwa RJ, Sankhla S (2007) Characterization of heterogeneous interaction in binary mixtures of ethylene glycol oligomer with water, ethyl alcohol and dioxane by dielectric analysis. J Mol Liq 130(1–3):119–131. https://doi.org/10.1016/j.molliq.2006.05.011

    Article  Google Scholar 

  131. Sengwa RJ, Sankhla S, Khatri V (2010) Dielectric characterization and molecular interaction behaviour in binary mixtures of amides with dimethylsulphoxide and 1,4-dioxane. J Mol Liq 151(1):17–22. https://doi.org/10.1016/j.molliq.2009.10.011

    Article  Google Scholar 

  132. Shanmuganathan S, Natalia D, Van Den Wittenboer A, Kohlmann C, Greiner L, Domínguez De María P (2010) Enzyme-catalyzed C - C bond formation using 2-methyltetrahydrofuran (2-MTHF) as (co)solvent: Efficient and bio-based alternative to DMSO and MTBE. Green Chem 12(12):2240–2245. https://doi.org/10.1039/c0gc00590h

    Article  Google Scholar 

  133. Shestakova M, Sillanpää M (2013) Removal of dichloromethane from ground and wastewater: A review. Chemosphere 93(7):1258–1267. https://doi.org/10.1016/j.chemosphere.2013.07.022

    Article  Google Scholar 

  134. Shi L, Wang SJ, Wong DSH, Huang K (2017) Novel Process Design of Synthesizing Propylene Carbonate for Dimethyl Carbonate Production by Indirect Alcoholysis of Urea. Ind Eng Chem Res 56(40):11531–11544. https://doi.org/10.1021/acs.iecr.7b02341

    Article  Google Scholar 

  135. Shinde MN, Talware RB, Hudge PG, Joshi YS, Kumbharkhane AC (2012) Dielectric relaxation and hydrogen bonding studies of 1, 3-propanediol-dioxane mixtures using time domain reflectometry technique. Pramana J Phys 78(2):297–308. https://doi.org/10.1007/s12043-011-0229-6

    Article  Google Scholar 

  136. Slater CS, Savelski MJ, Hitchcock D, Cavanagh EJ (2016) Environmental analysis of the life cycle emissions of 2-methyl tetrahydrofuran solvent manufactured from renewable resources. J Environ Sci Health Part A 51(6):487–494. https://doi.org/10.1080/10934529.2015.1128719

    Article  Google Scholar 

  137. Smoleń M, Kȩdziorek M, Grela K (2014) 2-Methyltetrahydrofuran: Sustainable solvent for ruthenium-catalyzed olefin metathesis. Catal Commun 44:80–84. https://doi.org/10.1016/j.catcom.2013.06.027

  138. Stickney JA, Sager SL, Clarkson JR, Smith LA, Locey BJ, Bock MJ, Hartung R, Olp SF (2003) An updated evaluation of the carcinogenic potential of 1,4-dioxane. Regul Toxicol Pharmacol 38(2):183–195. https://doi.org/10.1016/S0273-2300(03)00090-4

    Article  Google Scholar 

  139. Sun Q, Kang YT (2015) Experimental correlation for the formation rate of CO2 hydrate with THF (tetrahydrofuran) for cooling application. Energy 91:712–719. https://doi.org/10.1016/j.energy.2015.08.089

    Article  Google Scholar 

  140. Thuy NTH, Kikuchi Y, Sugiyama H, Noda M, Hirao M (2015) Degradation of lignin in ionic liquid with HCl as catalyst. Environ Prog Sustain Energy 35(3):809–814. https://doi.org/10.1002/ep.12276

    Article  Google Scholar 

  141. Tian J, Wang J, Zhao S, Jiang C, Zhang X, Wang X (2010) Hydrolysis of cellulose by the heteropoly acid H3PW12O40. Cellulose 17(3):587–594. https://doi.org/10.1007/s10570-009-9391-0

    Article  Google Scholar 

  142. Timedjeghdine M, Hasseine A, Binous H, Bacha O, Attarakih M (2016) Liquid-liquid equilibrium data for water + formic acid + solvent (butyl acetate, ethyl acetate, and isoamyl alcohol) at T = 291.15 K. Fluid Phase Equilib 415:51–57. https://doi.org/10.1016/j.fluid.2016.01.045

    Article  Google Scholar 

  143. Turchetto E, Lercker G, Bortolomeazzi R (1993) Oxisterol Determination in Selected Coffees. Toxicol Ind Health 9(3):519–527. https://doi.org/10.1177/074823379300900311

    Article  Google Scholar 

  144. Uusi-Penttilä MS, Richards RJ, Torgerson BA, Berglund KA (1997) Spectroscopically Determined Dielectric Constants for Various Esters. Ind Eng Chem Res 36(2):510–512. https://doi.org/10.1021/ie960532h

    Article  Google Scholar 

  145. Varisli D, Dogu T, Dogu G (2007) Ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropolyacid catalysts. Chem Eng Sci 62(18–20):5349–5352. https://doi.org/10.1016/j.ces.2007.01.017

    Article  Google Scholar 

  146. Vashist PN, Beckmann RB (1968) Liquid-Liquid Extraction. Ind Eng Chem 60(11):43–51. https://doi.org/10.1021/ie50707a010

    Article  Google Scholar 

  147. Vicente G, Paiva A, Fornari T, Najdanovic-Visak V (2011) Liquid-liquid equilibria for separation of tocopherol from olive oil using ethyl lactate. Chem Eng J 172(2–3):879–884. https://doi.org/10.1016/j.cej.2011.06.077

    Article  Google Scholar 

  148. Villegas LGC, Mashhadi N, Chen M, Mukherjee D, Taylor KE, Biswas N (2016) A Short Review of Techniques for Phenol Removal from Wastewater. Curr Pollut Rep 2(3):157–167. https://doi.org/10.1007/s40726-016-0035-3

    Article  Google Scholar 

  149. Virot M, Tomao V, Ginies C, Chemat F (2008) Total Lipid Extraction of Food Using d-Limonene as an Alternative to n-Hexane. Chromatographia 68(3–4):311–313. https://doi.org/10.1365/s10337-008-0696-1

    Article  Google Scholar 

  150. Wankhede D, Wankhede N, Lande M, Arbad B (2008) Densities and viscosities of propylene carbonate with aromatic hydrocarbons (benzene, 1,4-dimethylbenzene and ethylbenzene) at 288.15, 298.15 and 308.15K. Phys Chem Liq 46(3):319–327. https://doi.org/10.1080/00319100701230413

    Article  Google Scholar 

  151. Watanabe K, Yamagiwa N, Torisawa Y (2007a) Cyclopentyl methyl ether as a new and alternative process solvent. Org Process Res Dev 11(2):251–258. https://doi.org/10.1021/op0680136

    Article  Google Scholar 

  152. Watanabe K, Yamagiwa N, Torisawa Y (2007b) Cyclopentyl methyl ether as a new and alternative process solvent. Org Process Res Dev 11(2):251–258. https://doi.org/10.1021/op0680136

    Article  Google Scholar 

  153. Weingarten R, Cho J, Conner WC, Huber GW (2010) Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. Green Chem 12(8):1423–1429. https://doi.org/10.1039/c003459b

    Article  Google Scholar 

  154. Williams LL, Mas EM, Rubin JB (2002) Vapor-liquid equilibrium in the carbon dioxide-propylene carbonate system at high pressures. J Chem Eng Data 47(2):282–285. https://doi.org/10.1021/je010151x

    Article  Google Scholar 

  155. Wishaara SPA (1964) 3-Cyclopentyl and Cyclopentyl Ether Derivative US3159543. United State Paetnt 39:620–622. https://doi.org/10.1111/j.1559-3584.1927.tb04229.x

    Article  Google Scholar 

  156. Wolfson A, Snezhko A, Meyouhas T, Tavor D (2012) Glycerol derivatives as green reaction mediums. Green Chem Lett Rev 5(1):7–12. https://doi.org/10.1080/17518253.2011.572298

    Article  Google Scholar 

  157. Xu GZ, Chang C, Zhu WN, Li B, Ma XJ, Du FG (2013) A comparative study on direct production of ethyl levulinate from glucose in ethanol media catalysed by different acid catalysts. Chem Pap 67(11):1355–1363. https://doi.org/10.2478/s11696-013-0410-0

    Article  Google Scholar 

  158. Yabueng N, Napathorn SC (2018) Toward non-toxic and simple recovery process of poly(3-hydroxybutyrate) using the green solvent 1,3-dioxolane. Process Biochem 69(March):197–207. https://doi.org/10.1016/j.procbio.2018.02.025

    Article  Google Scholar 

  159. Yara-Varón E, Fabiano-Tixier AS, Balcells M, Canela-Garayoa R, Bily A, Chemat F (2016) Is it possible to substitute hexane with green solvents for extraction of carotenoids? A theoretical versus experimental solubility study. RSC Adv 6(33):27750–27759. https://doi.org/10.1039/c6ra03016e

    Article  Google Scholar 

  160. Yasuda H, He LN, Takahashi T, Sakakura T (2006) Non-halogen catalysts for propylene carbonate synthesis from CO2 under supercritical conditions. Appl Catal A Gen 298(1–2):177–180. https://doi.org/10.1016/j.apcata.2005.09.034

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Gujarat Technological University, Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University for the permission to publish this research.

Data and materials availability

All relevant data and material are presented in the main paper.

Author information

Authors and Affiliations

Authors

Contributions

All the authors make a substantial contribution to this manuscript. PS, SP, MS, and SD participated in drafting the manuscript. PS and MS wrote the main manuscript; all the authors discussed the results and implication on the manuscript at all stages.

Corresponding author

Correspondence to Manan Shah.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, P., Parikh, S., Shah, M. et al. A holistic review on application of green solvents and replacement study for conventional solvents. Biomass Conv. Bioref. 12, 1985–1999 (2022). https://doi.org/10.1007/s13399-021-01465-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01465-2

Keywords

Navigation