Skip to main content

Environmentally Benign Organic Solvent: A Green Approach

  • Chapter
  • First Online:
Green Organic Reactions

Abstract

Solvents play an imperative task in chemical reactions. In recent years, green and sustainable chemistry has demanded the improvement of new synthetic protocols that shrink waste and environment hazardous compounds which is a major concern in all fields and also in industry. Most of the chemical processes during fine chemical synthesis in research laboratory or in chemical industry entail solution phase for making the reaction medium homogeneous and allowing more reacting molecular interactions, and therefore, organic solvents are usually the first option for that. Solvents are needed both in reaction as well as in separation or purification steps either by extraction or by recrystallization. The major disadvantages of some solvents involve their pyrophoric nature, poor recovery, and high volatility. Therefore, majority of such solvents are associated with their hazardous nature which cause numerous ill effects toward human health and environment. This chapter summarizes the importance of green solvents over conventional solvents toward organic synthetic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam D (2000) Clean and green, but are they mean? Nature 407:938–940

    Article  CAS  Google Scholar 

  2. Andrade CKZ, Alves LM (2005) Environmentally benign solvents in organic synthesis: current topics. Curr Org Chem 9:195–218

    Article  CAS  Google Scholar 

  3. Capello C, Fischer U, Hungerbuhler K (2007) What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem 9:927–934

    Article  CAS  Google Scholar 

  4. Alfonsi K, Colberg J, Dunn PJ et al (2008) Green chemistry tools to influence a medicinal chemistry and research chemistry based organization. Green Chem 10:31–36

    Article  CAS  Google Scholar 

  5. Henderson RK, Jimenez-Gonzalez C, Constable DJC et al (2011) Expanding GSK’s solvent selection guide- embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem 13:854–862

    Article  CAS  Google Scholar 

  6. Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16:950–963

    Article  CAS  Google Scholar 

  7. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    Article  CAS  Google Scholar 

  8. Gu Y, Jérôme F (2013) Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem Soc Rev 42:9550–9570

    Article  CAS  Google Scholar 

  9. Yan N, Xiao C, Kou Y (2010) Transition metal nanoparticle catalysis in green solvents. Coord Chem Rev 254:1179–1218

    Article  CAS  Google Scholar 

  10. Patil BN, Lade JJ, Pardeshi SD et al (2019) Polyethylene-glycol-(PEG-400) mediated environmentally benign protocol for the synthesis of pyrrolo[1,2-a] quinoxalines from benzyl amines at room temperature. Chem Select 4:11362–11366

    CAS  Google Scholar 

  11. Akbarzadeh A, Dekamin MG (2017) A facile and environmentally benign polyethylene glycol 600-mediated method for the synthesis of densely functionalized 2-aminothiophene derivatives under ultrasonication. Green Chem Lett Rev 10:315–323

    Article  CAS  Google Scholar 

  12. Tao L-M, Li C-H, Chen J et al (2019) Cobalt(III)-catalyzed oxidative annulation of benzaldehydes with internal alkynes via C-H functionalization in poly(ethylene glycol). J Org Chem 84:6807–6812

    Article  CAS  Google Scholar 

  13. Kumar KS, Rajesham B, Kumar NP et al (2018) A ligand/additive/base-free C(sp2)-H activation and isocyanide insertion in PEG-400: synthesis of indolizine/imidazoline-fused heterocycles. Chem Select 3:4581–4584

    CAS  Google Scholar 

  14. Kardooni R, Kiasat AR (2019) A green, catalyst‑free synthesis of pyrazolopy rano pyrimidines in polyethylene glycol as a biodegradable medium at ambient temperature. Mol Divers 23:639–649

    Google Scholar 

  15. Liang J, Lv J, Shang Z (2011) Metal-free synthesis of amides by oxidative amidation of aldehydes with amines in PEG/oxidant system. Tetrahedron 67:8532–8535

    Google Scholar 

  16. Bi J, Zhang Z, Liu Q et al (2012) Catalyst-free and highly selective electrophilic mono-fluorination of aceto acetamides: facile and efficient preparation of 2-fluoroacetoacetamides in PEG-400.Green Chem 14:1159–1162

    Google Scholar 

  17. Khan MN, Karamthulla S, Choudhury LH et al (2015) Ultrasound assisted multicomponent reactions: a green method for the synthesis of highly functionalized selenopyridines using reusable polyethylene glycol as reaction medium. RSC Adv 5:22168–22172

    Article  CAS  Google Scholar 

  18. Ghom MH, Naykode MS, Humne VT et al (2019) A one-pot direct regioselective iodination of Fischer-Borsche product using periodic acid in PEG-400.Tetrahedron Lett 60:1029–1031

    Google Scholar 

  19. Kumar RU, Reddy KHV, Satish G et al (2016) Metal free synthesis of diaryl selenides using SeO2 as a selenium source. Tetrahedron Lett 57:4138–4141

    Google Scholar 

  20. Singh S, Saquib M, Singh M et al (2016) A catalyst free, multicomponent-tandem, facilesynthesis of pyrido[2,3-d]pyrimidines usingglycerol as a recyclable promoting medium. New J Chem 40:63–67

    Article  CAS  Google Scholar 

  21. Mitra B, Pariyar GC, Ghosh P (2019) Glycerol: A Benign Solvent-Assisted Metal-Free One-Pot Multi-Component Synthesis of 4H-Thiopyran and Thioamides from Easily Accessible Precursors. ChemistrySelect 4:5476–5483

    Article  CAS  Google Scholar 

  22. Nagasundaram RRN, Meignanasundar D, Vadivel P et al (2017) Glycerol assisted eco-friendly strategy for the facile synthesis of 4,40-(arylmethylene)bis(3-methyl-1H-pyrazol-5-ols) and 2-aryl-2,3-dihydroquinazolin-4(1H)-ones under catalyst-free conditions. Res Chem Intermed 43:1767–1782

    Article  Google Scholar 

  23. Morshedi A, Shaterian HR (2018) Green approaches to synthesis of novel and broad-range diversity of 4-(aryl)-3-(phenylsulfonyl)-4Hbenzo[h]chromen-2-amine derivatives. Res Chem Intermed 44:7219–7230

    Article  CAS  Google Scholar 

  24. Bhojane JM, Sarode SA, Nagarkar JM (2016) Nickel–glycerol: an efficient, recyclable catalysis system for Suzuki cross coupling reactions using aryl diazonium salts. New J Chem 40:1564–1570

    Article  CAS  Google Scholar 

  25. Dubey AV, Gharat SB, Kumar AV (2017) Glycerol as a recyclable solvent for copper-mediated ligand-free C-S cross-coupling reaction: application to synthesis of gemmacin precursor. Chem Select 2:4852–4856

    CAS  Google Scholar 

  26. Pasupuleti BG, Bez G (2019) CuI/L-proline catalyzed click reaction in glycerol for the synthesis of 1,2,3-triazoles.Tetrahedron Lett 60:142–146

    Google Scholar 

  27. Ingale AP, Patil SM, Shinde SV (2017) Catalyst-free, efficient and one pot protocol for synthesis of nitriles from aldehydes using glycerol as green solvent. Tetrahedron Lett 58:4845–4848

    Article  CAS  Google Scholar 

  28. Babu SA, Saranya S, Rohit KR et al (2019) Ligand-free Cu-catalyzed suzuki coupling of alkynyl bromides with boronic acids in ethanol under microwave irradiation. Chem Select 4:1019–1022

    CAS  Google Scholar 

  29. Etivand N, Khalafy J, Marjani AP (2019) Facile, one-pot, four-component synthesis of a new series of imidazo[1,2-a]pyridines in presence of TPAB in EtOH under reflux conditions. Res Chem Intermed 45:3379–3394

    Article  CAS  Google Scholar 

  30. Depa N, Erothu H (2019) One-pot three-component synthesis of 3-aminoalkyl indoles catalyzed by molecular iodine. Chem Select 4:9722–9725

    CAS  Google Scholar 

  31. Ghafuri H, Goodarzi N, Rashidizadeh A et al (2019) ompg-C3N4/SO3H: an efficient and recyclable organocatalyst for the facile synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Res Chem Intermed 45:5027–5043

    Article  CAS  Google Scholar 

  32. Kamalifar S, Kiyani H (2019) An expeditious and green one-pot synthesis of 12-substituted-3,3-dimethyl-3,4,5,12-tetrahydrobenzo[b] acridine-1,6,11(2H)-triones. Res Chem Intermed 45:5975–5987

    Article  CAS  Google Scholar 

  33. Alifu Z, Nizhamu M, Ablajan K (2019) Efficient synthesis of N′-benzylidene-2-hydroxymethylbenzohydrazides from the one-pot reaction of phthalide, hydrazine and aldehydes. Res Chem Intermed 45:4779–4788

    Article  CAS  Google Scholar 

  34. Maleki A, Azadegan S, Rahimi J (2019) Gallic acid grafted to amine-functionalized magnetic nanoparticles as a proficient catalyst for environmentally friendly synthesis of α-aminonitriles. Appl Organometal Chem 33:e48

    Article  Google Scholar 

  35. Naikwade A, Jagadale M, Kale D et al (2019) Intramolecular O-arylation using nano-magnetite supported N-heterocyclic carbene-copper complex with wingtip Ferrocene. Appl Organometal Chem 33:e5066

    Google Scholar 

  36. Sadeghi B (2019) Synthesis of novel 6-amino-2-(hydroxymethyl)-8-aryl-7-(phenylsulfonyl) pyrano[3,2-b]pyran-4(8H)-one derivatives catalyzed by nano-cellulose-OSO3H. Res Chem Intermed 45:4897–4906

    Article  CAS  Google Scholar 

  37. Gao G, Chen MN, Mo LP et al (2019) Catalyst free one-pot synthesis of α-aminophosphonates in aqueous ethyl lactate. Phosphorus Sulfur Silicon Relat Elem 194:528–532

    Article  CAS  Google Scholar 

  38. Shen G, Zhou H, Du P et al (2015) Bronsted acid-catalyzed selective C-C bond cleavage of 1,3-diketones: a facile synthesis of 4(3H)-quinazolinones in aqueous ethyl lactate. RSC Adv 5:85646–85651

    Article  CAS  Google Scholar 

  39. Zhang M, Fu QY, Gao G et al (2017) Catalyst-free, visible-light promoted one-pot synthesis of spirooxindole-pyran derivatives in aqueous ethyl lactate. ACS Sustain Chem Eng 5:6175–6182

    Article  CAS  Google Scholar 

  40. Guo RY, Wang P, Wang GD et al (2013) One-pot three-component synthesis of functionalized spirooxindoles in gluconic acid aqueous solution. Tetrahedron 69:2056–2061

    Article  CAS  Google Scholar 

  41. Li BL, Li PH, Fang XN et al (2013) One-pot four-component synthesis of highly substituted pyrrolesin gluconic acid aqueous solution. Tetrahedron 69:7011–7018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors B.M. is thankful to Council of Science Industrial Research (CSIR), New Delhi, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranab Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitra, B., Pariyar, G.C., Ghosh, P. (2021). Environmentally Benign Organic Solvent: A Green Approach. In: Anilkumar, G., Saranya, S. (eds) Green Organic Reactions. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6897-2_10

Download citation

Publish with us

Policies and ethics