Skip to main content

Advertisement

Log in

Analysis of carbon footprint and energy performance of biohydrogen production through gasification of different waste agricultural biomass from the Philippines

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Agricultural crop residues are available in abundance in Asian countries such as the Philippines. These residues have high potential as feedstock to produce clean and high-value energy products, to mitigate global warming and reduce dependence on fossil fuels. This study investigated the carbon footprint and energy performance of biohydrogen production system through gasification of different waste agricultural biomass. The proposed system includes biomass transport and pre-processing, gasification process, and biohydrogen enrichment and purification technologies. Calculation of the syngas composition was performed using a stoichiometric-thermodynamic equilibrium model using python script. Generation of energy from fossil fuel to support the system operations produced the highest greenhouse gas emission. The production system using sugarcane leaves as feedstocks exhibited the lowest carbon footprint, highest gasification efficiency, and best energy performance based on the computed energy ratio. Biophysical allocation was used to determine the burden associated with the biomass during its growth phase. Incorporation of the carbon uptake during biomass growth phase reduced the carbon footprint of the system. Sensitivity analysis showed that increasing C/O and H/O ratio improves the quality of the syngas produced, while increasing C/H ratio results to lower biohydrogen yield. In selection of feedstock mix, it is preferred to maximize C/O and H/O ratio while reducing C/H ratio of the feedstock composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable

References

  1. Sharma S, Basu S, Shetti NP, Aminabhavi TM (2020) Waste-to-energy nexus for circular economy and environmental protection: recent trends in hydrogen energy. Sci Total Environ 713:136633. https://doi.org/10.1016/j.scitotenv.2020.136633

    Article  Google Scholar 

  2. Sharma S, Kundu A, Basu S, Shetti NP, Aminabhavi TM (2020) Sustainable environmental management and related biofuel technologies. J Environ Manage 273:111096. https://doi.org/10.1016/j.jenvman.2020.111096

    Article  Google Scholar 

  3. Balachandar G, Khanna N, Das D (2013) Biohydrogen production from organic wastes by dark fermentation. In: Biohydrogen. Elsevier, pp 103–144

  4. Reddy CV, Reddy KR, Harish VVN, Shim J, Shankar MV, Shetti NP, Aminabhavi TM (2020) Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes. Int J Hydrogen Energy 45:7656–7679. https://doi.org/10.1016/j.ijhydene.2019.02.144

    Article  Google Scholar 

  5. Sampath P, Brijesh RKR, Reddy CV, Shetti NP, Kulkarni RV, Raghu AV (2020) Biohydrogen production from organic waste – a review. Chem Eng Technol 43:1240–1248. https://doi.org/10.1002/ceat.201900400

    Article  Google Scholar 

  6. Santos F, Machado G, Faria D, Lima J, Marçal N, Dutra E, Souza G (2017) Productive potential and quality of rice husk and straw for biorefineries. Biomass Convers Biorefinery 7:117–126. https://doi.org/10.1007/s13399-016-0214-x

    Article  Google Scholar 

  7. Srivastava RK, Shetti NP, Reddy KR, Aminabhavi TM (2020) Biofuels, biodiesel and biohydrogen production using bioprocesses. A review. Environ Chem Lett 18:1049–1072. https://doi.org/10.1007/s10311-020-00999-7

    Article  Google Scholar 

  8. Fawzy S, Osman AI, Doran J, Rooney DW (2020) Strategies for mitigation of climate change: a review. Environ Chem Lett. 18:2069–2094. https://doi.org/10.1007/s10311-020-01059-w

    Article  Google Scholar 

  9. Mori M, Jensterle M, Mržljak T, Drobnič B (2014) Life-cycle assessment of a hydrogen-based uninterruptible power supply system using renewable energy. Int J Life Cycle Assess 19:1810–1822. https://doi.org/10.1007/s11367-014-0790-6

    Article  Google Scholar 

  10. Dowaki K, Genchi Y (2009) Life cycle inventory analysis on Bio-DME and/or Bio-MeOH products through BLUE tower process. Int J Life Cycle Assess 14:611–620. https://doi.org/10.1007/s11367-009-0092-6

    Article  Google Scholar 

  11. Wong A, Zhang H, Kumar A (2016) Life cycle assessment of renewable diesel production from lignocellulosic biomass. Int J Life Cycle Assess 21:1404–1424. https://doi.org/10.1007/s11367-016-1107-8

    Article  Google Scholar 

  12. Reaño RL (2020) Assessment of environmental impact and energy performance of rice husk utilization in various biohydrogen production pathways. Bioresour Technol 299:122590. https://doi.org/10.1016/j.biortech.2019.122590

    Article  Google Scholar 

  13. Müller S, Stidl M, Pröll T, Rauch R, Hofbauer H (2011) Hydrogen from biomass: large-scale hydrogen production based on a dual fluidized bed steam gasification system. Biomass Convers Biorefinery 1:55–61. https://doi.org/10.1007/s13399-011-0004-4

    Article  Google Scholar 

  14. Wulf C, Kaltschmitt M (2013) Life cycle assessment of biohydrogen production as a transportation fuel in Germany. Bioresour Technol 150:466–475. https://doi.org/10.1016/j.biortech.2013.08.127

    Article  Google Scholar 

  15. Łukajtis R, Hołowacz I, Kucharska K, Glinka M, Rybarczyk P, Przyjazny A, Kamiński M (2018) Hydrogen production from biomass using dark fermentation. Renew Sustain Energy Rev 91:665–694. https://doi.org/10.1016/j.rser.2018.04.043

    Article  Google Scholar 

  16. Dincer I (2012) Green methods for hydrogen production. Int J Hydrogen Energy 37:1954–1971. https://doi.org/10.1016/j.ijhydene.2011.03.173

    Article  Google Scholar 

  17. Foley JM, Rozendal RA, Hertle CK, Lant PA, Rabaey K (2010) Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol 44:3629–3637. https://doi.org/10.1021/es100125h

    Article  Google Scholar 

  18. Osman AI, Deka TJ, Baruah DC, Rooney DW (2020) Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00965-x

  19. Karthik KV, Reddy CV, Reddy KR, Ravishankar R, Sanjeev G, Kulkarni RV, Shetti NP, Raghu AV (2019) Barium titanate nanostructures for photocatalytic hydrogen generation and photodegradation of chemical pollutants. J Mater Sci Mater Electron 30:20646–20653. https://doi.org/10.1007/s10854-019-02430-6

    Article  Google Scholar 

  20. Reddy NL, Rao VN, Vijayakumar M, Santhosh R, Anandan S, Karthik M, Shankar MV, Reddy KR, Shetti NP, Nadagouda MN, Aminabhavi TM (2019) A review on frontiers in plasmonic nano-photocatalysts for hydrogen production. Int J Hydrogen Energy 44:10453–10472. https://doi.org/10.1016/j.ijhydene.2019.02.120

    Article  Google Scholar 

  21. Srivastava RK, Shetti NP, Reddy KR, Aminabhavi TM (2020) Sustainable energy from waste organic matters via efficient microbial processes. Sci Total Environ 722:137927. https://doi.org/10.1016/j.scitotenv.2020.137927

    Article  Google Scholar 

  22. Valente A, Iribarren D, Dufour J (2017) Life cycle assessment of hydrogen energy systems: a review of methodological choices. Int J Life Cycle Assess 22:346–363. https://doi.org/10.1007/s11367-016-1156-z

    Article  Google Scholar 

  23. De-León Almaraz S, Azzaro-Pantel C (2017) Design and optimization of hydrogen supply chains for a sustainable future. In: Hydrogen economy. Elsevier, pp 85–120

  24. Dahou T, Defoort F, Nguyen HN, Bennici S, Jeguirim M, Dupont C (2020) Biomass steam gasification kinetics: relative impact of char physical properties vs. inorganic composition. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00894-9

  25. Wojnicka B, Ściążko M, Schmid JC (2019) Modelling of biomass gasification with steam. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-019-00575-2

  26. Wang M, Qi Y, Ma R, Fu Z, Ge P, Ji S, Wu J, Qian X (2019) Investigation of CaO influences on fast gasification characteristics of biomass in a fixed-bed reactor. Waste and Biomass Valorization. 11:3731–3738. https://doi.org/10.1007/s12649-019-00694-x

    Article  Google Scholar 

  27. Ahmed II, Gupta AK (2011) Kinetics of woodchips char gasification with steam and carbon dioxide. Appl Energy 88:1613–1619. https://doi.org/10.1016/j.apenergy.2010.11.007

    Article  Google Scholar 

  28. Pfeifer C, Koppatz S, Hofbauer H (2011) Steam gasification of various feedstocks at a dual fluidised bed gasifier: impacts of operation conditions and bed materials. Biomass Convers Biorefinery 1:39–53. https://doi.org/10.1007/s13399-011-0007-1

    Article  Google Scholar 

  29. Osman AI, Abu-Dahrieh JK, Cherkasov N, Fernandez-Garcia J, Walker D, Walton RI, Rooney DW, Rebrov E (2018) A highly active and synergistic Pt/Mo2C/Al2O3 catalyst for water-gas shift reaction. Mol Catal 455:38–47. https://doi.org/10.1016/j.mcat.2018.05.025

    Article  Google Scholar 

  30. Binder M, Kraussler M, Kuba M, Luisser M (2018) Hydrogen from biomass gasification. IEA Bioenergy

  31. Mendes D, Mendes A, Madeira LM, Iulianelli A, Sousa JM, Basile A (2010) The water-gas shift reaction: from conventional catalytic systems to Pd-based membrane reactors-a review. Asia-Pacific J Chem Eng 5:111–137. https://doi.org/10.1002/apj.364

    Article  Google Scholar 

  32. Burmistrz P, Chmielniak T, Czepirski L, Gazda-Grzywacz M (2016) Carbon footprint of the hydrogen production process utilizing subbituminous coal and lignite gasification. J Clean Prod 139:858–865. https://doi.org/10.1016/j.jclepro.2016.08.112

    Article  Google Scholar 

  33. Halog A (2009) Models for evaluating energy, environmental and sustainability performance of biofuels value chain. Int J Glob Energy Issues 32:83. https://doi.org/10.1504/IJGEI.2009.027975

    Article  Google Scholar 

  34. Karka P, Papadokonstantakis S, Kokossis A (2019) Environmental impact assessment of biomass process chains at early design stages using decision trees. Int J Life Cycle Assess 24:1675–1700. https://doi.org/10.1007/s11367-019-01591-0

    Article  Google Scholar 

  35. Liptow C, Janssen M, Tillman A-M (2018) Accounting for effects of carbon flows in LCA of biomass-based products—exploration and evaluation of a selection of existing methods. Int J Life Cycle Assess 23:2110–2125. https://doi.org/10.1007/s11367-018-1436-x

    Article  Google Scholar 

  36. Halog A, Manik Y (2011) Advancing integrated systems modelling framework for life cycle sustainability assessment. Sustainability 3:469–499. https://doi.org/10.3390/su3020469

    Article  Google Scholar 

  37. Sreejith CC, Muraleedharan C, Arun P (2013) Life cycle assessment of producer gas derived from coconut shell and its comparison with coal gas: an Indian perspective. Int J Energy Environ Eng 4:8. https://doi.org/10.1186/2251-6832-4-8

    Article  Google Scholar 

  38. Mackenzie SG, Leinonen I, Kyriazakis I (2017) The need for co-product allocation in the life cycle assessment of agricultural systems—is “biophysical” allocation progress? Int J Life Cycle Assess 22:128–137. https://doi.org/10.1007/s11367-016-1161-2

    Article  Google Scholar 

  39. Thoma G, Jolliet O, Wang Y (2013) A biophysical approach to allocation of life cycle environmental burdens for fluid milk supply chain analysis. Int Dairy J 31:S41–S49. https://doi.org/10.1016/j.idairyj.2012.08.012

    Article  Google Scholar 

  40. PSA (2019) Crops Statistics of the Philippines 2014-2018. Quezon City, PH

  41. Salam MA, Ahmed K, Akter N, Hossain T, Abdullah B (2018) A review of hydrogen production via biomass gasification and its prospect in Bangladesh. Int J Hydrogen Energy 43:14944–14973. https://doi.org/10.1016/j.ijhydene.2018.06.043

    Article  Google Scholar 

  42. ISO (2006) ISO 14040 Environmental Management - Life Cycle Assessment - Principles and Framework

  43. ISO (2006) ISO 14044 Environmental management - Life Cycle Assessment - Requirements and guidelines

  44. Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B (2016) The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess 21:1218–1230. https://doi.org/10.1007/s11367-016-1087-8

    Article  Google Scholar 

  45. Earles JM, Halog A (2011) Consequential life cycle assessment: a review. Int J Life Cycle Assess 16:445–453. https://doi.org/10.1007/s11367-011-0275-9

    Article  Google Scholar 

  46. Moiceanu G, Paraschiv G, Voicu G, Dinca M, Negoita O, Chitoiu M, Tudor P (2019) Energy consumption at size reduction of lignocellulose biomass for bioenergy. Sustainability 11:2477. https://doi.org/10.3390/su11092477

    Article  Google Scholar 

  47. Rupesh S, Muraleedharan C, Arun P (2015) A comparative study on gaseous fuel generation capability of biomass materials by thermo-chemical gasification using stoichiometric quasi-steady-state model. Int J Energy Environ Eng 6:375–384. https://doi.org/10.1007/s40095-015-0182-0

    Article  Google Scholar 

  48. Lim Y, Lee U-D (2014) Quasi-equilibrium thermodynamic model with empirical equations for air–steam biomass gasification in fluidized-beds. Fuel Process Technol 128:199–210. https://doi.org/10.1016/j.fuproc.2014.07.017

    Article  Google Scholar 

  49. Loy ACM, Yusup S, Lam MK, Chin BLF, Shahbaz M, Yamamoto A, Acda MN (2018) The effect of industrial waste coal bottom ash as catalyst in catalytic pyrolysis of rice husk for syngas production. Energy Convers Manag 165:541–554. https://doi.org/10.1016/j.enconman.2018.03.063

    Article  Google Scholar 

  50. Migo-Sumagang MVP, Van Hung N, Detras MCM, Alfafara CG, Borines MG, Capunitan JA, Gummert M (2020) Optimization of a downdraft furnace for rice straw-based heat generation. Renew Energy 148:953–963. https://doi.org/10.1016/j.renene.2019.11.001

    Article  Google Scholar 

  51. Biswas B, Pandey N, Bisht Y, Singh R, Kumar J, Bhaskar T (2017) Pyrolysis of agricultural biomass residues: comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour Technol 237:57–63. https://doi.org/10.1016/j.biortech.2017.02.046

    Article  Google Scholar 

  52. Muthu Dinesh Kumar R, Anand R (2019) Production of biofuel from biomass downdraft gasification and its applications. In: Advanced Biofuels. Elsevier, pp 129–151

  53. Zeng K, He X, Yang H, Wang X, Chen H (2019) The effect of combined pretreatments on the pyrolysis of corn stalk. Bioresour Technol 281:309–317. https://doi.org/10.1016/j.biortech.2019.02.107

    Article  Google Scholar 

  54. Balasundram V, Ibrahim N, Kasmani RM, Isha R, Hamid MKA, Hasbullah H, Ali RR (2018) Catalytic upgrading of sugarcane bagasse pyrolysis vapours over rare earth metal (Ce) loaded HZSM-5: effect of catalyst to biomass ratio on the organic compounds in pyrolysis oil. Appl Energy 220:787–799. https://doi.org/10.1016/j.apenergy.2018.03.141

    Article  Google Scholar 

  55. Soponpongpipat N, Sittikul D, Sae-Ueng U (2015) Higher heating value prediction of torrefaction char produced from non-woody biomass. Front Energy 9:461–471. https://doi.org/10.1007/s11708-015-0377-3

    Article  Google Scholar 

  56. Yahaya AZ, Somalu MR, Muchtar A, Sulaiman SA, Wan Daud WR (2019) Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor. Energy 175:931–940. https://doi.org/10.1016/j.energy.2019.03.138

    Article  Google Scholar 

  57. Ram M, Mondal MK (2018) Comparative study of native and impregnated coconut husk with pulp and paper industry waste water for fuel gas production. Energy 156:122–131. https://doi.org/10.1016/j.energy.2018.05.102

    Article  Google Scholar 

  58. Safarian S, Richter C, Unnthorsson R (2019) Waste biomass gasification simulation using Aspen Plus: performance evaluation of wood chips, sawdust and mixed paper wastes. J Power Energy Eng 07:12–30. https://doi.org/10.4236/jpee.2019.76002

    Article  Google Scholar 

  59. Basu P (2018) Design of biomass gasifiers. In: Biomass gasification, pyrolysis and torrefaction. Elsevier, pp 263–329

  60. Figueiredo RT, Ramos ALD, de Andrade HMC, Fierro JLG (2005) Effect of low steam/carbon ratio on water gas shift reaction. Catal Today 107–108:671–675. https://doi.org/10.1016/j.cattod.2005.07.050

    Article  Google Scholar 

  61. Bauer F, Persson T, Hulteberg C, Tamm D (2013) Biogas upgrading - technology overview, comparison and perspectives for the future. Biofuels, Bioprod Biorefining 7:499–511. https://doi.org/10.1002/bbb.1423

    Article  Google Scholar 

  62. Timma L, Dace E, Trydeman Knudsen M (2020) Temporal aspects in emission accounting—case study of agriculture sector. Energies 13:800. https://doi.org/10.3390/en13040800

    Article  Google Scholar 

  63. Basu P (2018) Gasification theory. In: Biomass gasification, pyrolysis and torrefaction. Elsevier, pp 211–262

  64. Sun C-H, Fu Q, Liao Q, Xia A, Huang Y, Zhu X, Reungsang A, Chang H-X (2019) Life-cycle assessment of biofuel production from microalgae via various bioenergy conversion systems. Energy 171:1033–1045. https://doi.org/10.1016/j.energy.2019.01.074

    Article  Google Scholar 

  65. Speight JG (2015) Gasification processes for syngas and hydrogen production. In: Gasification for synthetic fuel production. Elsevier, pp 119–146

  66. Motta IL, Miranda NT, Maciel Filho R, Wolf Maciel MR (2018) Biomass gasification in fluidized beds: a review of biomass moisture content and operating pressure effects. Renew Sustain Energy Rev 94:998–1023. https://doi.org/10.1016/j.rser.2018.06.042

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Resmond Lat Reaño.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Codes using Python are provided as Supplementary file (3).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 91 kb)

ESM 2

(PDF 102 kb)

ESM 3

(PDF 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reaño, R.L., Halog, A. Analysis of carbon footprint and energy performance of biohydrogen production through gasification of different waste agricultural biomass from the Philippines. Biomass Conv. Bioref. 13, 8685–8699 (2023). https://doi.org/10.1007/s13399-020-01151-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01151-9

Keywords

Navigation