Skip to main content

Advertisement

Log in

Optimization of BmimCl pretreatment of sugarcane bagasse through combining multiple responses to increase sugar production. An approach of the kinetic model

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Sugarcane bagasse (SCB) was pretreated with 1-butyl-3-methylimidazolium chloride (BmimCl) at different conditions of temperature (80 °C to 150 °C) and solid loading (4 to 10%) at two times (20 and 60 min). The pretreatment conditions were optimized using a central composite rotatable design (CCRD) and desirability function having in mind the principles of green engineering. The pretreatments resulted in modifications of morphological and structural characteristics of biomass, also resulting in partial hemicellulose reduction. The founded optimal condition of pretreatment under the criterion of maximized sugar yield after enzymatic hydrolysis and minimized total sugar loss in pretreatment was 140 °C and 6% w/w of solid loading with 20 min of process. Also, a kinetic model was obtained verifying its validity with experimental values. It showed a lower activation energy of cellulose modification and hemicellulose conversion in comparison with the literature. One of the major findings was the strong correlation between glucose conversion and the degree of polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tan HT, Lee KT (2012) Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis. Chem Eng J 183:448–458. https://doi.org/10.1016/j.cej.2011.12.086

    Article  Google Scholar 

  2. Liu CZ, Wang F, Stiles AR, Guo C (2012) Ionic liquids for biofuel production: opportunities and challenges. Appl Energy 92:406–414. https://doi.org/10.1016/j.apenergy.2011.11.031

    Article  Google Scholar 

  3. Capolupo L, Faraco V (2016) Green methods of lignocellulose pretreatment for biorefinery development. Appl Microbiol Biotechnol 100:9451–9467. https://doi.org/10.1007/s00253-016-7884-y

    Article  Google Scholar 

  4. Mesa L, Martínez Y, Barrio E, González E (2017) Desirability function for optimization of dilute acid pretreatment of sugarcane straw for ethanol production and preliminary economic analysis based in three fermentation configurations. Appl Energy 198:299–311. https://doi.org/10.1016/j.apenergy.2017.03.018

    Article  Google Scholar 

  5. van Rantwijk F, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107:2757–2785. https://doi.org/10.1021/cr050946x

    Article  Google Scholar 

  6. Gremos S, Zarafeta D, Kekos D, Kolisis F (2011) Direct enzymatic acylation of cellulose pretreated in BMIMCl ionic liquid. Bioresour Technol 102:1378–1382. https://doi.org/10.1016/j.biortech.2010.09.021

    Article  Google Scholar 

  7. Yang F, Li L, Li Q, Tan W, Liu W, Xian M (2010) Enhancement of enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media by ultrasonic intensification. Carbohydr Polym 81:311–316. https://doi.org/10.1016/j.carbpol.2010.02.031

    Article  Google Scholar 

  8. Zhao H, Jones CL, Baker GA, Xia S, Olubajo O, Person VN (2009) Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J Biotechnol 139:47–54. https://doi.org/10.1016/j.jbiotec.2008.08.009

    Article  Google Scholar 

  9. Cao Y, Zhang R, Cheng T, Guo J, Xian M, Liu H (2017) Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives. Appl Microbiol Biotechnol 101:521–532. https://doi.org/10.1007/s00253-016-8057-8

    Article  Google Scholar 

  10. Samayam IP, Hanson BL, Langan P, Schall CA (2011) Ionic-liquid induced changes in cellulose structure associated with enhanced biomass hydrolysis. Biomacromolecules 12:3091–3098. https://doi.org/10.1021/bm200736a

    Article  Google Scholar 

  11. Antunes FAF, Chandel AK, Terán-Hilares R et al (2019) Overcoming challenges in lignocellulosic biomass pretreatment for second-generation (2G) sugar production: emerging role of nano, biotechnological and promising approaches. Biotech 3:9. https://doi.org/10.1007/s13205-019-1761-1

    Article  Google Scholar 

  12. Yoo CG, Pu Y, Ragauskas AJ (2017) Ionic liquids: promising green solvents for lignocellulosic biomass utilization. Curr Opin Green Sustain Chem 5:5–11. https://doi.org/10.1016/j.cogsc.2017.03.003

    Article  Google Scholar 

  13. Nargotra P, Sharma V, Gupta M, Kour S, Bajaj BK (2018) Application of ionic liquid and alkali pretreatment for enhancing saccharification of sunflower stalk biomass for potential biofuel-ethanol production. Bioresour Technol 267:560–568. https://doi.org/10.1016/j.biortech.2018.07.070

    Article  Google Scholar 

  14. Equihua-Sánchez M, Barahona-Pérez LF (2019) Physical and chemical characterization of Agave tequilana bagasse pretreated with the ionic liquid 1-ethyl-3-methylimidazolium acetate. Waste and Biomass Valorization 10:1285–1294. https://doi.org/10.1007/s12649-017-0150-4

    Article  Google Scholar 

  15. Singh JK, Sharma RK, Ghosh P, Kumar A, Khan ML (2018) Imidazolium based ionic liquids: a promising green solvent for water hyacinth biomass deconstruction. Front Chem 6:. https://doi.org/10.3389/fchem.2018.00548, , 6

  16. Halder P, Kundu S, Patel S, Setiawan A, Atkin R, Parthasarthy R, Paz-Ferreiro J, Surapaneni A, Shah K (2019) Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renew Sust Energ Rev 105:268–292. https://doi.org/10.1016/j.rser.2019.01.052

    Article  Google Scholar 

  17. Cao Y, Zhang R, Cheng T, Guo J, Xian M, Liu H (2017) Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives. Appl Microbiol Biotechnol 101:521–532. https://doi.org/10.1007/s00253-016-8057-8

    Article  Google Scholar 

  18. Cao X, Peng X, Sun S, Zhong L, Wang S, Lu F, Sun R (2014) Impact of regeneration process on the crystalline structure and enzymatic hydrolysis of cellulose obtained from ionic liquid. Carbohydr Polym 111:400–403. https://doi.org/10.1016/j.carbpol.2014.05.004

    Article  Google Scholar 

  19. Sharma V, Nargotra P, Bajaj BK (2019) Ultrasound and surfactant assisted ionic liquid pretreatment of sugarcane bagasse for enhancing saccharification using enzymes from an ionic liquid tolerant Aspergillus assiutensis VS34. Bioresour Technol 285:121319. https://doi.org/10.1016/j.biortech.2019.121319

    Article  Google Scholar 

  20. Tura A, Fontana RC, Camassola M (2018) Schizosaccharomyces pombe as an efficient yeast to convert sugarcane bagasse pretreated with ionic liquids in ethanol. Appl Biochem Biotechnol 186:960–971. https://doi.org/10.1007/s12010-018-2788-1

    Article  Google Scholar 

  21. Saha K, Dwibedi P, Ghosh A, et al (2018) Extraction of lignin, structural characterization and bioconversion of sugarcane bagasse after ionic liquid assisted pretreatment. 3 Biotech 8:1–12. https://doi.org/10.1007/s13205-018-1399-4

  22. Saha K, Dasgupta J, Chakraborty S, Antunes FAF, Sikder J, Curcio S, dos Santos JC, Arafat HA, da Silva SS (2017) Optimization of lignin recovery from sugarcane bagasse using ionic liquid aided pretreatment. Cellulose 24:3191–3207. https://doi.org/10.1007/s10570-017-1330-x

    Article  Google Scholar 

  23. Hashmi M, Sun Q, Tao J, Wells T Jr, Shah AA, Labbé N, Ragauskas AJ (2017) Comparison of autohydrolysis and ionic liquid 1-butyl-3-methylimidazolium acetate pretreatment to enhance enzymatic hydrolysis of sugarcane bagasse. Bioresour Technol 224:714–720. https://doi.org/10.1016/j.biortech.2016.10.089

    Article  Google Scholar 

  24. Yu X, Bao X, Zhou C, Zhang L, Yagoub AEGA, Yang H, Ma H (2018) Ultrasound-ionic liquid enhanced enzymatic and acid hydrolysis of biomass cellulose. Ultrason Sonochem 41:410–418. https://doi.org/10.1016/j.ultsonch.2017.09.003

    Article  Google Scholar 

  25. Pang Z, Lyu W, Dong C, Li H, Yang G (2016) High selective delignification using oxidative ionic liquid pretreatment at mild conditions for efficient enzymatic hydrolysis of lignocellulose. Bioresour Technol 214:96–101. https://doi.org/10.1016/j.biortech.2016.04.095

    Article  Google Scholar 

  26. Meng Y, Pang Z, Dong C (2017) Enhancing cellulose dissolution in ionic liquid by solid acid addition. Carbohydr Polym 163:317–323. https://doi.org/10.1016/j.carbpol.2017.01.085

    Article  Google Scholar 

  27. Abraham MA, Nguyen N (2003) “Green engineering: defining the principles” - results from the Sandestin conference. Environ Prog 22:233–236. https://doi.org/10.1002/ep.670220410

    Article  Google Scholar 

  28. Coish P, McGovern E, Zimmerman JB, Anastas PT (2017) The value-adding connections between the management of ecoinnovation and the principles of green chemistry and green engineering. Elsevier Inc.

  29. Gurau G, Wang H, Qiao Y, Lu X, Zhang S, Rogers RD (2012) Chlorine-free alternatives to the synthesis of ionic liquids for biomass processing. Pure Appl Chem 84:745–754. https://doi.org/10.1351/pac-con-11-11-10

    Article  Google Scholar 

  30. Cruz-Monteagudo M, Ancede-Gallardo E, Jorge M, Cordeiro MNDS (2013) Chemoinformatics profiling of ionic liquids-automatic and chemically interpretable cytotoxicity profiling, virtual screening, and cytotoxicophore identification. Toxicol Sci 136:548–565. https://doi.org/10.1093/toxsci/kft209

    Article  Google Scholar 

  31. Cruz-Monteagudo M, Cordeiro MNDS (2014) Chemoinformatics profiling of ionic liquids-uncovering structure-cytotoxicity relationships with network-like similarity graphs. Toxicol Sci 138:191–204. https://doi.org/10.1093/toxsci/kft210

    Article  Google Scholar 

  32. A. Sluiter, B. Hames, Ruiz CS, J. Sluiter and DT Win (2008) Determination of sugars, byproducts, and degradation products in liquid fraction process samples

  33. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268. https://doi.org/10.1351/pac198759020257

    Article  Google Scholar 

  34. Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  Google Scholar 

  35. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  Google Scholar 

  36. Zhang YHP, Lynd LR (2005) Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules 6:1510–1515. https://doi.org/10.1021/bm049235j

    Article  Google Scholar 

  37. Kristensen JB, Thygesen LG, Felby C et al (2008, 2008) Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels (1):11, 141–146. https://doi.org/10.1186/1754-6834-1-5

  38. Qiu Z, Aita GM, Walker MS (2012) Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresour Technol 117:251–256. https://doi.org/10.1016/j.biortech.2012.04.070

    Article  Google Scholar 

  39. Rinaldi R, Meine N, vom Stein J et al (2010) Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose? ChemSusChem 3:266–276. https://doi.org/10.1002/cssc.200900281

    Article  Google Scholar 

  40. Rinaldi R, Palkovits R, Schüth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed 47:8047–8050. https://doi.org/10.1002/anie.200802879

    Article  Google Scholar 

  41. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728. https://doi.org/10.1021/cr9001947

    Article  Google Scholar 

  42. Arora R, Manisseri C, Li C, Ong MD, Scheller HV, Vogel K, Simmons BA, Singh S (2010) Monitoring and analyzing process streams towards understanding ionic liquid pretreatment of switchgrass (Panicum virgatum L.). Bioenergy Res 3:134–145. https://doi.org/10.1007/s12155-010-9087-1

    Article  Google Scholar 

  43. Grilc M, Likozar B, Levec J (2015) Kinetic model of homogeneous lignocellulosic biomass solvolysis in glycerol and imidazolium-based ionic liquids with subsequent heterogeneous hydrodeoxygenation over NiMo/Al2O3 catalyst. Catal Today 256:302–314. https://doi.org/10.1016/j.cattod.2015.02.034

    Article  Google Scholar 

  44. Pronyk C, Mazza G (2010) Kinetic modeling of hemicellulose hydrolysis from triticale straw in a pressurized low polarity water flow-through reactor. Ind Eng Chem Res 49:6367–6375. https://doi.org/10.1021/ie1003625

    Article  Google Scholar 

  45. Mesa L, Morales M, González E, Cara C, Romero I, Castro E, Mussatto SI (2014) Restructuring the processes for furfural and xylose production from sugarcane bagasse in a biorefinery concept for ethanol production. Chem Eng Process Process Intensif 85:196–202. https://doi.org/10.1016/j.cep.2014.07.012

    Article  Google Scholar 

  46. Szczerbowski D, Pitarelo AP, Zandoná Filho A, Ramos LP (2014) Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr Polym 114:95–101. https://doi.org/10.1016/j.carbpol.2014.07.052

    Article  Google Scholar 

  47. Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583. https://doi.org/10.1039/c2gc36364j

    Article  Google Scholar 

  48. Li W, Sun N, Stoner B, Jiang X, Lu X, Rogers RD (2011) Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem 13:2038. https://doi.org/10.1039/c1gc15522a

    Article  Google Scholar 

  49. Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids-a review. Ind Crop Prod 32:175–201. https://doi.org/10.1016/j.indcrop.2010.04.005

    Article  Google Scholar 

  50. Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646. https://doi.org/10.1039/b822702k

    Article  Google Scholar 

  51. Trinh LTP, Lee YJ, Park CS, Bae HJ (2019) Aqueous acidified ionic liquid pretreatment for bioethanol production and concentration of produced ethanol by pervaporation. J Ind Eng Chem 69:57–65. https://doi.org/10.1016/j.jiec.2018.09.008

    Article  Google Scholar 

  52. Francisco M, Mlinar AN, Yoo B, Bell AT, Prausnitz JM (2011) Recovery of glucose from an aqueous ionic liquid by adsorption onto a zeolite-based solid. Chem Eng J 172:184–190. https://doi.org/10.1016/j.cej.2011.05.087

    Article  Google Scholar 

  53. Mesa L, Albernas Y, Morales M, et al (2016) Integration of organosolv process for biomass pretreatment in a biorefinery. In: Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. pp 229–254

  54. Smuga-Kogut M, Zgrska K, Kogut T et al (2017) The use of ionic liquid pretreatment of rye straw for bioethanol production. Fuel 191:266–274. https://doi.org/10.1016/j.fuel.2016.11.066

    Article  Google Scholar 

  55. Morales-delaRosa S, Campos-Martin JM, Fierro JLG (2012) High glucose yields from the hydrolysis of cellulose dissolved in ionic liquids. Chem Eng J 181–182:538–541. https://doi.org/10.1016/j.cej.2011.11.061

    Article  Google Scholar 

  56. Rodrigues MI, Iemma AF (2014) Experimental design and process optimization. CRC Press, New York

    Book  Google Scholar 

  57. Hu X, Xiao Y, Niu K, Zhao Y, Zhang B, Hu B (2013) Functional ionic liquids for hydrolysis of lignocellulose. Carbohydr Polym 97:172–176. https://doi.org/10.1016/j.carbpol.2013.04.061

    Article  Google Scholar 

  58. Zhang Q, Hu J, Lee DJ (2017) Pretreatment of biomass using ionic liquids: research updates. Renew Energy 111:77–84. https://doi.org/10.1016/j.renene.2017.03.093

    Article  Google Scholar 

  59. Shatalov AA, Pereira H (2005) Kinetics of polysaccharide degradation during ethanol-alkali delignification of giant reed - part 2. Minor carbohydrates and uronic acids. Carbohydr Polym 61:304–313. https://doi.org/10.1016/j.carbpol.2005.04.016

    Article  Google Scholar 

  60. Shill K, Miller K, Clark DS, Blanch HW (2012) A model for optimizing the enzymatic hydrolysis of ionic liquid-pretreated lignocellulose. Bioresour Technol 126:290–297. https://doi.org/10.1016/j.biortech.2012.08.062

    Article  Google Scholar 

  61. Puri VP (1984) Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol Bioeng 26:1219–1222. https://doi.org/10.1002/bit.260261010

    Article  Google Scholar 

  62. Lee CM, Kubicki JD, Fan B, Zhong L, Jarvis MC, Kim SH (2015) Hydrogen-bonding network and OH stretch vibration of cellulose: comparison of computational modeling with polarized IR and SFG spectra. J Phys Chem B 119:15138–15149

    Article  Google Scholar 

  63. Chen M-J, Zhang X-Q, Matharu A et al (2017) Monitoring the crystalline structure of sugar cane bagasse in aqueous ionic liquids, ACS Sustain Chem Eng acssuschemeng. 7b01526. https://doi.org/10.1021/acssuschemeng.7b01526

  64. Gomide FTF, da Silva AS, da Silva Bon EP, Alves TLM (2019) Modification of microcrystalline cellulose structural properties by ball-milling and ionic liquid treatments and their correlation to enzymatic hydrolysis rate and yield. Cellulose 8:7323–7335. https://doi.org/10.1007/s10570-019-02578-8

    Article  Google Scholar 

  65. Brienzo M, Tyhoda L, Benjamin Y, Görgens J (2015) Relationship between physicochemical properties and enzymatic hydrolysis of sugarcane bagasse varieties for bioethanol production. New Biotechnol 32:253–262. https://doi.org/10.1016/j.nbt.2014.12.007

    Article  Google Scholar 

  66. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728. https://doi.org/10.1021/cr9001947

    Article  Google Scholar 

  67. Torr KM, Love KT, Simmons BA, Hill SJ (2016) Structural features affecting the enzymatic digestibility of pine wood pretreated with ionic liquids. Biotechnol Bioeng 113:540–549. https://doi.org/10.1002/bit.25831

    Article  Google Scholar 

  68. Asakawa A, Oka T, Sasaki C, Asada C, Nakamura Y (2016) Cholinium ionic liquid/cosolvent pretreatment for enhancing enzymatic saccharification of sugarcane bagasse. Ind Crop Prod 86:113–119. https://doi.org/10.1016/j.indcrop.2016.03.046

    Article  Google Scholar 

  69. Bose S, Barnes CA, Petrich JW (2012) Enhanced stability and activity of cellulase in an ionic liquid and the effect of pretreatment on cellulose hydrolysis. Biotechnol Bioeng 109:434–443. https://doi.org/10.1002/bit.23352

    Article  Google Scholar 

  70. dos Santos Rocha MSR, Pratto B, de Sousa R et al (2017) A kinetic model for hydrothermal pretreatment of sugarcane straw. Bioresour Technol 228:176–185. https://doi.org/10.1016/j.biortech.2016.12.087

    Article  Google Scholar 

  71. Augusto F, Marins S, Silva MB (2018) Estudo comparativo entre métodos de otimização de problemas com múltiplas respostas. Exacta 16:73–88. https://doi.org/10.5585/ExactaEP.v16n3.7508

    Article  Google Scholar 

  72. Costa NR, Lourenço J, Pereira ZL (2011) Desirability function approach: a review and performance evaluation in adverse conditions. Chemom Intell Lab Syst 107:234–244. https://doi.org/10.1016/j.chemolab.2011.04.004

    Article  Google Scholar 

  73. Aung EM, Endo T, Fujii S, Kuroda K, Ninomiya K, Takahashi K (2018) Efficient pretreatment of bagasse at high loading in an ionic liquid. Ind Crop Prod 119:243–248. https://doi.org/10.1016/j.indcrop.2018.04.006

    Article  Google Scholar 

  74. Vallejos ME, Felissia FE, Kruyeniski J, Area MC (2015) Kinetic study of the extraction of hemicellulosic carbohydrates from sugarcane bagasse by hot water treatment. Ind Crop Prod 67:1–6. https://doi.org/10.1016/j.indcrop.2014.12.058

    Article  Google Scholar 

Download references

Funding

The authors would like to thank the Brazilian National Council for Scientific and Technological Development (CNPq) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leyanis Mesa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesa, L., Valerio, V.S., Soares Forte, M.B. et al. Optimization of BmimCl pretreatment of sugarcane bagasse through combining multiple responses to increase sugar production. An approach of the kinetic model. Biomass Conv. Bioref. 12, 2027–2043 (2022). https://doi.org/10.1007/s13399-020-00792-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00792-0

Keywords

Navigation