Skip to main content
Log in

Optimization of lignin recovery from sugarcane bagasse using ionic liquid aided pretreatment

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM]oAc) was employed for the pretreatment of sugarcane bagasse (SCB) and extraction of lignin, a potentially valuable by-product of the biofuel industry. Response surface methodology based on central composite design was exploited and thereby an empirical model, exhibiting a coefficient of determination, R2, of 0.9890, was established to optimize lignin recovery. In particular, a maximum lignin yield, equal to 90.1%, was calculated at the optimal pretreatment conditions, namely time: 120 min, temperature: 140 °C, and ionic liquid to bagasse ratio equal to 20:1 (wt/wt). The presence of guaiacyl and syringyl rings in lignin was confirmed by Fourier transform infrared spectroscopy (FTIR); whereas UV–Vis spectrophotometry showed that both p-coumaric acid and ferulic acid were contained in the lignin. Thermal analysis indicated a maximum decomposition rate of 2%/°C at 265 °C while Gel permeation chromatography analysis revealed that the molecular weight (Mw) of recovered lignin was equal to 1769 g/mol. Comparison of FTIR spectra of pretreated and untreated bagasse showed a negligible presence of lignin in the pretreated samples. Maximum delignification of bagasse after pretreatment was thus ensured. Thermal stability of the ionic liquid towards recyclability was proven by thermogravimetric analysis. The present study established adequate performance of neat and recycled ([EMIM]oAc) with regard to lignin recovery from SCB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Antunes FAF, Chandel AK, Milessi TSS, Santos JC, Rosa CA, da Silva SS (2014) Bioethanol production from sugarcane bagasse by a novel brazilian pentose fermenting yeast Scheffersomyces shehatae UFMG-HM 52.2: evaluation of fermentation medium. Int J Chem Eng Article Id 180681:1–8

    Google Scholar 

  • Asada C, Basnet S, Otsuka M, Sasaki C, Nakamura Y (2015) Epoxy resin synthesis using low molecular weight lignin separated from various lignocellulosic materials. Int J Biol Macromolec 74:413–419

    Article  CAS  Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manage 52:858–875

    Article  CAS  Google Scholar 

  • Barr CJ, Hanson BL, Click K, Perrotta G, Schall CA (2014) Influence of ionic-liquid incubation temperature on changes in cellulose structure, biomass composition, and enzymatic digestibility. Cellulose 21:973–982

    Article  CAS  Google Scholar 

  • Boeriu CG, Bravo D, Gosselink RJA, Van Dam JEG (2004) Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crop Prod 20:205–218

    Article  CAS  Google Scholar 

  • Canilha L, Chandel AK, dos Santos Milessi TS, Antunes FAF, da Costa Freitas WL, das Graças Almeida Felipe M, da Silva SS, (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:1–15

    Article  Google Scholar 

  • Cao J, Wu Y, Jin Y, Yilihan P, Huang W (2014) Response surface methodology approach for optimization of the removal of chromium (VI) by NH2-MCM-41. J Taiwan Inst Chem Eng 45:860–868

    Article  CAS  Google Scholar 

  • Casas A, Oliet M, Alonso MV, Rodriguez F (2012) Dissolution of Pinus radiata and Eucalyptus globulus woods in ionic liquids under microwave radiation: lignin regeneration and characterization. Sep Purif Technol 97:115–122

    Article  CAS  Google Scholar 

  • Chakraborty S, Aggarwal V, Mukherjee D, Andras K (2012) Biomass to biofuel: a review on production technology. Asia Pac J Chem Eng 7:S254–S262

    Article  CAS  Google Scholar 

  • Chakraborty S, Dasgupta J, Farooq U, Sikder J, Drioli E, Curcio S (2014) Experimental analysis, modeling and optimization of chromium (VI) removal from aqueous solutions by polymer-enhanced ultrafiltration. J Memb Sci 456:139–154

    Article  CAS  Google Scholar 

  • Chirayil CJ, Joy J, Mathew L, Mozetic M, Koetz J, Thomas S (2014) Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind Crops Prod 59:27–34

    Article  CAS  Google Scholar 

  • da Costa Lopes AM, João KG, Rubik DF, Bogel-Łukasik E, Duarte LC, Andreaus J, Bogel-Łukasik R (2013) Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation. Biores Technol 142:198–208

    Article  Google Scholar 

  • Dasgupta J, Singh M, Sikder J, Padarthi V, Chakraborty S, Curcio S (2015) Response surface-optimized removal of Reactive Red 120 dye from its aqueous solutions using polyethyleneimine enhanced ultrafiltration. Ecotox Environ Safe 121:271–278

    Article  CAS  Google Scholar 

  • Fu D, Mazza G (2011) Aqueous ionic liquid pretreatment of straw. Bioresour Technol 102:7008–7011

    Article  CAS  Google Scholar 

  • Ghaffar SH, Fan M (2013) Structural analysis for lignin characteristics in biomass straw. Biomass Bioenerg 57:264–279

    Article  CAS  Google Scholar 

  • Huddleston JG, Willauer HD, Swatloski RP, Visser AE, Rogers RD (1998) Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem Commun 99:1765–1766

    Article  Google Scholar 

  • Jia S, Cox BJ, Guo X, Zhang ZC, Ekerdt JG (2010) Cleaving the β-O-4 bonds of lignin model compounds in an acidic ionic liquid, 1-H-3-methylimidazolium chloride: an optional strategy for the degradation of lignin. Chem Sus Chem 3:1078–1084

    Article  CAS  Google Scholar 

  • Kim J-Y, Shin E-J, Eom I-Y, Won K, Kim YH, Choi D, Choi I-G, Choi J-W (2011) Structural features of lignin macromolecules extracted with ionic liquid from poplar wood. Bioresour Technol 102:9020–9025

    Article  CAS  Google Scholar 

  • Koo B-W, Park N, Jeong H-S, Choi J-W, Yeo H, Choi I-G (2011) Characterization of by-products from organosolv pretreatments of yellow poplar wood (Liriodendron tulipifera) in the presence of acid and alkali catalysts. J Ind Eng Chem 17:18–24

    Article  CAS  Google Scholar 

  • Kuo C-H, Lee C-K (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohyd Polym 77(1):41–46

    Article  CAS  Google Scholar 

  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Article  CAS  Google Scholar 

  • Lee KM, Ngoh GC, Chua ASM (2015) Ionic liquid-mediated solid acid saccharification of sago waste: kinetic, ionic liquid recovery and solid acid catalyst reusability study. Ind Crop Prod 77:415–423

    Article  CAS  Google Scholar 

  • Li Q, He YC, Xian M, Jun G, Xu X, Yang JM, Li LZ (2009) Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 100:3570–3575

    Article  CAS  Google Scholar 

  • Li MF, Fan YM, Sun RC, Xu F (2010) Characterization of extracted lignin of Bamboo (Neosinocalamusaffinis) pretreated with sodium hydroxide/urea solution at low temperature. BioResources 5(3):1762–1778

    CAS  Google Scholar 

  • Ma H-H, Zhang B-X, Zhang P, Li S, Gao Y-F, Hu X-M (2016) An efficient process for lignin extraction and enzymatic hydrolysis of corn stalk by pyrrolidonium ionic liquids. Fuel Process Technol 148:138–145

    Article  CAS  Google Scholar 

  • Maton C, De Vos N, Stevens CV (2013) Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev 42(13):5963

    Article  CAS  Google Scholar 

  • Matsushita Y, Inomata T, Takagi Y, Hasegawa T, Fukushima K (2011) Conversion of sulfuric acid lignin generated during bioethanol production from lignocellulosic materials into polyesters with ɛ-caprolactone. J Wood Sci 57:214–218

    Article  CAS  Google Scholar 

  • Moghaddam L, Zhang Z, Wellard RM, Bartley JP, O’Hara IM, Doherty WOS (2014) Characterisation of lignins isolated from sugarcane bagasse pretreated with acidified ethylene glycol and ionic liquids. Biomass Bioenerg 70:498–512

    Article  CAS  Google Scholar 

  • Nelder JA (1998) The selection of terms in response surface models—how strong is the weak heredity principle. Am Stat 52:315–318

    Google Scholar 

  • Ninomiya K, Inoue K, Aomori Y, Ohnishi A, Ogino C, Shimizu N, Takahashi K (2015) Characterization of fractionated biomass component and recovered ionic liquid during repeated process of cholinium ionic liquid-assisted pretreatment and fractionation. Chem Eng J 259:323–329

    Article  CAS  Google Scholar 

  • Norgren M, Edlund H (2014) Lignin: recent advances and emerging applications. Curr Opin Colloid Interfaceterface 19:406–419

    Google Scholar 

  • Perez-Pimienta JA, Lopez-Ortega MG, Chavez-Carvayar JA, Varanasi P, Stavila V, Cheng G, Singh S, Simmons BA (2015) Characterization of agave bagasse as a function of  ionic liquid pretreatment. Biomass Bioenerg 75:180–188

    Article  CAS  Google Scholar 

  • Pinkert A, Goeke DF, Marsh KN, Pang S (2011) Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chem 13:3124–3136

    Article  CAS  Google Scholar 

  • Prado R, Erdocia X, Labidi J (2016) Study of the influence of reutilization ionic liquid on lignin extraction. J Clean Prod 111:125–132

    Article  CAS  Google Scholar 

  • Qiu Z, Aita GM, Walker MS (2012) Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Biores Technol 117:251–256

    Article  CAS  Google Scholar 

  • Rashid T, Kait CF, Regupathi I, Murugesan T (2016) Dissolution of kraft lignin using protic ionic liquids and characterization. Ind Crop Prod 84:284–293

    Article  CAS  Google Scholar 

  • Saha K, Maheswari RU, Sikder J, Chakraborty S, da Silva SS, dos Santos JC (2017) Membranes as a tool to support biorefineries: applications in enzymatic hydrolysis, fermentation and dehydration for bioethanol production. Renew Sustain Energy Rev 74:873–890

    Article  CAS  Google Scholar 

  • Sidik DAB, Ngadi N, Amin NAS (2013) Optimization of lignin production from empty fruit bunch via liquefaction with ionic liquid. BioresourTechnol 135:690–696

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP) (Revised August 2012). Issue Date: 4/25/2008 NREL/TP-510-42618, 18 pp

  • Solomon S (2014) Sugarcane Agriculture and Sugar Industry in India: at a Glance. Sugar Tech 16(2):113–124

    Article  Google Scholar 

  • Su Y, Du R, Guo H, Cao M, Wu Q, Su R, Qi W, He Z (2015) Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: characterization of its major components. Food Bioprod Process 94:322–330

    Article  CAS  Google Scholar 

  • Sun F, Chen H (2008) Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment. Bioresour Technol 99:6156–6161

    Article  CAS  Google Scholar 

  • Sun RC, Tomkinson J, Jones GL (2000) Fractional characterization of ash-AQ lignin by successive extraction with organic solvents from oil palm EFB fibre. Polym Degrad Stab 68(1):111–119

    Article  CAS  Google Scholar 

  • Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11(5):646

    Article  CAS  Google Scholar 

  • Sun Y-C, Xu JK, Xu F, Sun R-C (2013) Efficient separation and physico-chemical characterization of lignin from eucalyptus using ionic liquid–organic solvent and alkaline ethanol solvent. Ind Crop Prod 47:277–285

    Article  CAS  Google Scholar 

  • Tan HT, Lee KT (2012) Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis. Chem Eng J183:448–458

    Article  Google Scholar 

  • Teramoto Y, Lee SH, Endo T (2008) Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresour Technol 99:8856–8863

    Article  CAS  Google Scholar 

  • Timung R, Mohan M, Chilukoti B, Sasmal S, Banerjee T, Goud VV (2015) Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: a comparative study. Biomass Bioenerg 81:9–18

    Article  CAS  Google Scholar 

  • Trinh TK, Kang LS (2011) Response surface methodological approach to optimize the coagulation–flocculation process in drinking water treatment. Chem Eng Res Des 89:1126–1135

    Article  CAS  Google Scholar 

  • Trinh LTP, Lee YJ, Lee J-W, Lee H-J (2015) Characterization of ionic liquid pretreatment and  the bioconversion of pretreated mixed softwood biomass. Biomass Bioenerg 81:1–8

    Article  CAS  Google Scholar 

  • Wang X, Li H, Cao Y, Tang Q (2011) Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Biores Technol 102(17):7959–7965

    Article  CAS  Google Scholar 

  • Weerachanchai P, Leong SSJ, Chang MW, Ching CB, Lee J-M (2012) Improvement of biomass properties by pretreatment with ionic liquids for bioconversion process. Bioresour Technol 111:453–459

    Article  CAS  Google Scholar 

  • Wendler F, Todi L-N, Meister F (2012) Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochim Acta 528:76–84

    Article  CAS  Google Scholar 

  • Yoon LW, Ngoh GC, Chua ASM (2011) Comparison of ionic liquid, acid and alkali pretreatments for sugarcane bagasse enzymatic saccharification. J Chem Technol Biotechnol 86:134–138

    Google Scholar 

  • Yoon LW, Ang TN, Ngoh GC, Chua ASM (2012) Regression analysis on ionic liquid pretreatment of sugarcane bagasse and assessment of structural changes. Biomass Bioenerg 36:160–169

    Article  CAS  Google Scholar 

  • Yuan TQ, You TT, Wang W, Xu F, Sun RC (2013) Synergistic benefits of ionic liquid and alkaline pretreatments of poplar wood. Part 2: characterization of lignin and hemicelluloses. Bioresour Technol 136:345–350

    Article  CAS  Google Scholar 

  • Zavrel M, Bross D, Funke M, Buchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresour Technol 100:2580–2587

    Article  CAS  Google Scholar 

  • Zhang P, Dong S-J, Ma H-H, Zhang B-X, Wang Y-F, Hu X-M (2015) Fractionation of corn stover into cellulose, hemicellulose and lignin using a series of ionic liquids. Ind Crop Prod 76:688–696

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their sincerest gratitude to the Department of Biotechnology, Government of India for the financial support granted for this research work under the bilateral collaboration between India and Brazil (DBT- India and MCTI-CNPq-Brazil) vide no. DBT/In-Bz/2013-16/06 and CNPq process no: 401361/2013-6. Authors are thankful to the Research Council for the State of São Paulo (FAPESP) (Award Number 2014/27055-2) for financial support and Department of Science and Technology, Government of India (DST) for the grants under DST-FIST Program (SR/FST/ETI-204/2007) with which the infrastructure for the present research was developed. All the authors are grateful to Dr. Alfred D. French for his concern and valuable suggestions in improving the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, K., Dasgupta, J., Chakraborty, S. et al. Optimization of lignin recovery from sugarcane bagasse using ionic liquid aided pretreatment. Cellulose 24, 3191–3207 (2017). https://doi.org/10.1007/s10570-017-1330-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1330-x

Keywords

Navigation