Skip to main content
Log in

An Erratum to this article was published on 11 December 2014

Abstract

For an elliptic curve \(E/\mathbb {Q}\), we determine the maximum number of twists \(E^d/\mathbb {Q}\) it can have such that \(E^d(\mathbb {Q})_{tors}\supsetneq E(\mathbb {Q})[2]\). We use these results to determine the number of distinct quadratic fields \(K\) such that \(E(K)_{tors}\supsetneq E(\mathbb {Q})_{tors}\). The answer depends on \(E(\mathbb {Q})_{tors}\) and we give the best possible bound for all the possible cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bosma, W., Cannon, J.J., Fieker, C., Steel A. (eds.) Handbook of Magma functions, 2.18 edn. (2012). http://magma.maths.usyd.edu.au/magma/faq/citing

  2. Cremona, J.: Algorithms for Modular Elliptic Curves, 2nd edn. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  3. González-Jiménez, E., Tornero, J.M.: Torsion of rational elliptic curves over quadratic fields. Rev. R. Acad. Cienc. Exactas Fís Nat. Ser. A Math. RACSAM 108, 923–934 (2014)

    Article  MATH  Google Scholar 

  4. Gouvêa, F., Mazur, B.: The square-free sieve and the rank of elliptic curves. J. Am. Math. Soc. 4, 1–23 (1991)

    Article  MATH  Google Scholar 

  5. Jeon, D., Kim, C.H., Park, E.: On the torsion of elliptic curves over quartic number fields. J. Lond. Math. Soc. 74(2), 1–12 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kamienny, S.: Torsion points on elliptic curves and \(q\)-coefficients of modular forms. Invent. Math. 109, 221–229 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kenku, M.A.: The modular curves \(X_0(65)\) and \(X_0(91)\) and rational isogeny. Math. Proc. Camb. Philos. Soc. 87, 15–20 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kenku, M.A.: The modular curve \(X_0(169)\) and rational isogeny. J. Lond. Math. Soc. 22(2), 239–244 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kenku, M.A.: On the modular curves \(X_0(125)\), \(X_1(25)\) and \(X_1(49)\). J. Lond. Math. Soc. 23(2), 415–427 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kenku, M.A., Momose, F.: Torsion points on elliptic curves defined over quadratic fields. Nagoya Math. J. 109, 125–149 (1988)

    MATH  MathSciNet  Google Scholar 

  11. Klagsbrun, Z., Mazur, B., Rubin, K.: Disparity in Selmer ranks of quadratic twists of elliptic curves. Ann. Math. 178(2), 287–320 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kubert, D.S.: Universal bounds on the torsion of elliptic curves. Proc. Lond. Math. Soc. 33, 193–237 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kwon, S.: Torsion subgroups of elliptic curves over quadratic extensions. J. Number Theory 62, 144–162 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Laska, M., Lorenz, M.: Rational points on elliptic curves over \(\mathbb{Q}\) in elementary abelian 2-extensions of \(\mathbb{Q}\). J. Reine Angew. Math. 355, 163–172 (1985)

    MATH  MathSciNet  Google Scholar 

  15. Mazur, B.: Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math. 47, 33–186 (1978)

    Article  Google Scholar 

  16. Mazur, B.: Rational isogenies of prime degree. Invent. Math. 44, 129–162 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mazur, B., Rubin, K.: Ranks of twists of elliptic curves and Hilbert’s tenth problem. Invent. Math. 181, 541–575 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Merel, L.: Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124, 437–449 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Najman, F. Torsion of rational elliptic curves over cubic fields and sporadic points on \(X_1(n)\), Math. Res. Letters (accepted)

  20. Washington, L.C.: Elliptic Curves: Number Theory and Cryptography, 2nd edn. Chapman & Hall, Boca Raton (2008)

    Book  Google Scholar 

Download references

Acknowledgments

We thank Burton Newman for pointing out a mistake in an earlier version of this paper, and the anonymous referees for their corrections and for suggesting many improvements both in the presentation and the content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Najman.

Additional information

The author was supported by the Ministry of Science, Education, and Sports, Republic of Croatia, grant 037-0372781-2821.

Appendix

Appendix

Table 1 gives examples for every case possible from Theorem 1, excluding those when the choice of \(E(\mathbb {Q})_{tors}\) uniquely determines the number of twists with large torsion. The second column gives an example of such an elliptic curve, the third column gives the number of quadratic twists of \(E\), and in the fourth column all the \(d\)-s such that \(E^d(\mathbb {Q})\) has large torsion are listed, with \(E^d(\mathbb {Q})_{tors}\) given in brackets for every listed \(d\).

Table 2 gives examples for every case possible from Theorem 2, excluding those when the choice of \(E(\mathbb {Q})_{tors}\) uniquely determines the number of quadratic fields in which the torsion of \(E\) grows. The values in the columns are listed in a similar manner as in Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najman, F. The number of twists with large torsion of an elliptic curve. RACSAM 109, 535–547 (2015). https://doi.org/10.1007/s13398-014-0199-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-014-0199-x

Keywords

Mathematics Subject Classification

Navigation