Skip to main content
Log in

On ranks of quadratic twists of a Mordell curve

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In this article, we consider the quadratic twists of the Mordell curve \(E:y^2=x^3-1\). For a square-free integer k, the quadratic twist of E is given by \(E_k:y^2=x^3-k^3.\) We prove that there exist infinitely many k for which the rank of \(E_k\) is 0, by modifying existing techniques. Moreover, using simple tools, we produce precise values of k for which the rank of \(E_k\) is 0. We also construct an infinite family of curves \(\{ E_k \}\) such that the rank of each \(E_k\) is positive. It was conjectured by Silverman that there are infinitely many primes p for which \(E_p({\mathbb {Q}})\) has a positive rank as well as infinitely many primes q for which \(E_q({\mathbb {Q}})\) has rank 0. We show, assuming the Parity Conjecture that Silverman’s conjecture is true for this family of quadratic twists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, A.: Contributions to the theory of Diophantine equations, I. On the representation of integers by binary quadratic forms; II. The Diophantine equation \(y^2 = x^3 + k\). Philos. Trans. R. Soc. Lond. (Ser. A) 263 (1967 -1968) 173-191; 193-208

  2. Birch, B.J., Stephens, N.M.: The parity of the rank of the Mordell-Weil group. Topology 5, 295–299 (1996)

    Article  MathSciNet  Google Scholar 

  3. Breuil, C., Conrad, B., Diamond, F., Taylor, R.: On the modularity of elliptic curves over \({\mathbb{Q}}\). J. Am. Math. Soc. 14, 843–939 (2001)

    Article  Google Scholar 

  4. Burungale, A., Tian, Y.: The even parity Goldfeld conjecture: congruent number elliptic curves. J. Number Theory 230, 161–195 (2022)

    Article  MathSciNet  Google Scholar 

  5. Chahal, J., Priddis, N.: Some congruence properties of the Pell equation. Ann. Sci. Math. Québec 35(2), 175–184 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Coates, J., Li, Y., Tian, Y., Zhai, S.: Quadratic twists of elliptic curves. Proc. Lond. Math. Soc. 110(2), 357–394 (2015)

    Article  MathSciNet  Google Scholar 

  7. Dabrowskis, A.: On the proportion of rank 0 twists of elliptic curve. C. R. Acad. Sci. Paris Ser. I(346), 483 (2008)

    Article  MathSciNet  Google Scholar 

  8. Davenport, H., Heilbronn, H.: On the density of discriminants of cubic fields II. Proc. R. Soc. Lond. A 322, 405–420 (1971)

    Article  MathSciNet  Google Scholar 

  9. Dujella, A.: High rank elliptic curves with prescribed torsion, http://web.math.hr/~duje/tors/tors.html. Accessed Dec 2020

  10. Dujella, A.: Infinite families of elliptic curves with high rank and prescribed torsion. https://web.math.pmf.unizg.hr/~duje/tors/generic.html. Accessed Dec 2020

  11. Feng, K., Xiong, M.: On Selmer groups and Tate-Shafarevich groups for elliptic curves \(y^2 = x^3 - n^3\). Mathematica 58(2), 236–274 (2012)

    MATH  Google Scholar 

  12. Goldfeld, D.: Conjectures on elliptic curves over quadratic fields. In: Number Theory Carbondale. Lecture Notes in Mathematics, vol. 751, pp. 108–118. Springer, Berlin (1979)

  13. Hofstein, J., Luo, W.: Nonvanishing of L-series and the combinatorial sieve. Math. Res. Lett. 4, 435–444 (1997)

    Article  MathSciNet  Google Scholar 

  14. Iwaniec, H., Sarnak, P.: The non-vanishing of central values of automorphic L-functions and Landau-Siegel zeros. Israel J. Math. 120, 155–177 (2000)

    Article  MathSciNet  Google Scholar 

  15. James, K.: L-series with non-zero central critical value. J. Am. Math. Soc. 11, 635–641 (1998)

    Article  Google Scholar 

  16. Jedrzejak, T.: On Twists of the Fermat cubic \(x^3 + y^3 =2\). Int. J. Number Theory 10(1), 55–72 (2014)

    Article  MathSciNet  Google Scholar 

  17. Kohnen, W.: On the proportion of quadratic twists of L-functions attached to cusp forms not vanishing at the central point. J. Reine Angew. Math. 508, 179–187 (1999)

    Article  MathSciNet  Google Scholar 

  18. Kolyvagin, V.A.: Finiteness of \(E({\mathbb{Q}})\) and ø\((E;{\mathbb{Q}})\) for a subclass of Weil curves. Izv. Acad. Nauk USSR 52, 522–540 (1988). ((in Russian))

    MathSciNet  Google Scholar 

  19. Liverance, E.: A formula for the root number of a family of elliptic curves. J. Number Theory 51(2), 288–305 (1995)

    Article  MathSciNet  Google Scholar 

  20. Mordell, L. J.: On some Diophantine equations \(y^2 = x^3 + k\) with no rational solutions (II). In: Number Theory and Analysis, Springer, Boston, pp. 224–232 (1969)

  21. Ono, K.: Twists of elliptic curves. Compos. Math. 106(3), 349–360 (1997)

    Article  MathSciNet  Google Scholar 

  22. Ono, K., Skinner, C.: Non-vanishing of quadratic twists of modular L-functions. Invent. Math. 34, 651–660 (1998)

    Article  MathSciNet  Google Scholar 

  23. Qin, H.R.: Anomalous primes of the elliptic curve \(E_{D}: y^2 = x^3 + D\). Proc. Lond. Math. Soc. 112(3), 415–453 (2016)

    Article  MathSciNet  Google Scholar 

  24. Scholz, A.: Uber die Beziehung der Klassenzahlen quadratischer Krper zueinander. J. Reine Angew. Math. 166, 201–203 (1932)

    MathSciNet  MATH  Google Scholar 

  25. Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, New York (1986)

    Book  Google Scholar 

  26. Smith, A.: \(2^{\infty }\)-Selmer groups, \(2^{\infty }\)-class groups, and Goldfeld’s conjecture. arxiv.org/abs/1702.02325

  27. Tian, Y., Yuan, X., Zhang, S.: Genus periods, genus points and congruent number problem. Asian J. Math. 21(4), 721–773 (2017)

    Article  MathSciNet  Google Scholar 

  28. Vatsal, V.: Rank-one twists of a certain elliptic curve. Math. Ann. 311, 791–794 (1998)

    Article  MathSciNet  Google Scholar 

  29. Waldspurger, J.L.: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. Pures Appl. 60, 375–484 (1981)

    MathSciNet  MATH  Google Scholar 

  30. Wu, X., Qin, Y.: Rational points of elliptic curve \(y^2 = x^3 + k^3\). Algebra Colloq. 25(1), 133–138 (2018)

    Article  MathSciNet  Google Scholar 

  31. Yu, G.: On the quadratic twists of a family of elliptic curves. Mathematika 52(1–2), 139–154 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Juyal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abhishek Juyal research is supported by NBHM post-doctoral fellowship (54603/2021/NBHM)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juyal, A., Moody, D. & Roy, B. On ranks of quadratic twists of a Mordell curve. Ramanujan J 59, 31–50 (2022). https://doi.org/10.1007/s11139-022-00585-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-022-00585-1

Keywords

Mathematics Subject Classification

Navigation