Skip to main content
Log in

The Influence of Nano- and Micron-size of MXene Flakes on the Electrochemical Performance

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

MXene, as a new type of two-dimensional material, has attracted much interest since it was discovered in 2011. However, only few articles discussed the effect of MXene flake size on its electrochemical performance. Here, a sand milling way is explored to produce nano-size MXene and the MILD method is used to prepare micron-size MXene (1 μm) as a comparison. Meanwhile, a mask-assisted interdigital micro-supercapacitors is prepared to explore the dependence of the electrochemical properties of MXene on their flake size. We show that nano-size MXene (200 nm) has a higher ionic conductivity as compared to normal micron-size MXene (1 μm). On the contrary, the larger flake size has higher electrical conductivities. As a result, the capacitance of micron-size MXene is better than nano-size MXene (200 nm) because the electrical conductivities are dominant. This research is helpful for further understanding of the influence of MXene flake size on its electrochemical performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lv, G., Wang, J., Shi, Z., Fan, L.: Intercalation and delamination of two-dimensional MXene (Ti3C2Tx) and application in sodium-ion batteries. Mater. Lett. 219, 45–50 (2018)

    Article  CAS  Google Scholar 

  2. Yang, Q., Huang, Z., Li, X., Liu, Z., Li, H., Liang, G., Wang, D., Huang, Q., Zhang, S., Chen, S.: A wholly degradable, rechargeable Zn–Ti3C2 MXene capacitor with superior anti-self-discharge function. ACS nano. 13(7), 8275–8283 (2019)

    Article  CAS  Google Scholar 

  3. Meena, J.S., Choi, S.B., Kim, J.-W.: Review on Ti3C2-Based mxene nanosheets for flexible electrodes. Electron. Mater. Lett. 1–19 (2022)

  4. Shekhirev, M., Busa, J., Shuck, C.E., Torres, A., Bagheri, S., Sinitskii, A., Gogotsi, Y.: Ultralarge flakes of Ti3C2T x MXene via soft delamination. ACS Nano 16(9), 13695–13703 (2022)

    Article  CAS  Google Scholar 

  5. Meena, J.S., Choi, S.B., Kim, J.-W.: Review on Ti3C2-Based MXene nanosheets for flexible electrodes. Electron. Mater. Lett. 18(3), 256–274 (2022)

    Article  CAS  Google Scholar 

  6. Lim, H.-S., Choi, S.B., Kwon, H., Lim, J.-W., Han, C.J., Oh, J.-M., Kim, J.-W.: Development of a highly flexible composite electrode comprised of Ti3C2-Based MXene nanosheets and Ag nanoparticles. Electron. Mater. Lett 17(6), 513–520 (2021)

    Article  CAS  Google Scholar 

  7. Lipatov, A., Loes, M.J., Vorobeva, N.S., Bagheri, S., Abourahma, J., Chen, H., Hong, X., Gogotsi, Y., Sinitskii, A.: High breakdown current density in monolayer Nb4C3T x MXene. ACS Mater. Lett. 3(8), 1088–1094 (2021)

    Article  CAS  Google Scholar 

  8. Kayali, E., VahidMohammadi, A., Orangi, J., Beidaghi, M.: Controlling the dimensions of 2D MXenes for ultrahigh-rate pseudocapacitive energy storage. ACS Appl. Mater. Interfaces 10(31), 25949–25954 (2018)

    Article  CAS  Google Scholar 

  9. Dresselhaus, M.S., Thomas, I.: Alternative energy technologies. Nature. 414(6861), 332–337 (2001)

    Article  CAS  Google Scholar 

  10. Anayee, M., Kurra, N., Alhabeb, M., Seredych, M., Hedhili, M.N., Emwas, A.-H., Alshareef, H.N., Anasori, B., Gogotsi, Y.: Role of acid mixtures etching on the surface chemistry and sodium ion storage in Ti 3 C 2 T x MXene. Chem. Commun. 56(45), 6090–6093 (2020)

    Article  CAS  Google Scholar 

  11. Armand, M., Tarascon, J.-M.: Building better batteries. Nature 451(7179), 652–657 (2008)

    Article  CAS  Google Scholar 

  12. Maleski, K., Ren, C.E., Zhao, M.-Q., Anasori, B., Gogotsi, Y.: Size-dependent physical and electrochemical properties of two-dimensional MXene flakes. ACS Appl. Mater. Interfaces 10(29), 24491–24498 (2018)

    Article  CAS  Google Scholar 

  13. Sengupta, A., Rao, B.B., Sharma, N., Parmar, S., Chavan, V., Singh, S.K., Kale, S., Ogale, S.: Comparative evaluation of MAX, MXene, NanoMAX, and NanoMAX-derived-MXene for microwave absorption and Li ion battery anode applications. Nanoscale. 12(15), 8466–8476 (2020)

    Article  CAS  Google Scholar 

  14. Li, H., Li, X., Liang, J., Chen, Y.: Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro‐supercapacitors with extraordinary volumetric performance. Adv. Energy Mater. 9(15), 1803987 (2019)

    Article  Google Scholar 

  15. Wang, L., Zhang, H., Wang, B., Shen, C., Zhang, C., Hu, Q., Zhou, A., Liu, B.: Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron. Mater. Lett. 12(5), 702–710 (2016)

    Article  CAS  Google Scholar 

  16. Su, X., Zhang, J., Mu, H., Zhao, J., Wang, Z., Zhao, Z., Han, C., Ye, Z.: Effects of etching temperature and ball milling on the preparation and capacitance of Ti3C2 MXene. J. Alloys Compd. 752, 32–39 (2018)

    Article  CAS  Google Scholar 

  17. Wang, Q.-W., Zhang, H.-B., Liu, J., Zhao, S., Xie, X., Liu, L., Yang, R., Koratkar, N.,  Yu, Z.-Z.: Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29(7) (2019)

  18. Zhu, Y., Rajouâ, K., Le Vot, S., Fontaine, O., Simon, P., Favier, F.: Modifications of MXene layers for supercapacitors. Nano Energy 73 (2020)

Download references

Acknowledgements

This work was supported by the National Innovation Center of Advanced Dyeing and Finishing Technology (ZJ2021A10); the Opening Project of Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC) (Q811580722).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruoxin Li or Guangtao Chang.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, F., Xu, B., Chen, R. et al. The Influence of Nano- and Micron-size of MXene Flakes on the Electrochemical Performance. Electron. Mater. Lett. 19, 527–533 (2023). https://doi.org/10.1007/s13391-023-00418-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-023-00418-3

Keywords

Navigation