Skip to main content

Advertisement

Log in

Lamellar MXene: A novel 2D nanomaterial for electrochemical sensors

  • Review Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

MXenes, as recently emerging lamellar two-dimensional (2D) materials of transition metal carbides and/or nitrides, have attracted intensive attention for various applications in sensors, catalysis, energy storage, and biomedicine owing to their fascinating and technologically useful properties. This review presents the current progress of MXene-based materials applied in the field of electrochemical sensors. Firstly, how synthetic strategies and surface modification affect the properties of MXene was emphasized. Secondly, MXene as an electrode material for constructing electrochemical sensors based on MXene nanocomposites, especially metal nanoparticles (MNPs)/MXene, conductive polymers (CPs)/MXene, and carbon materials/MXene nanocomposites, was well discussed. Finally, the challenges and outlooks in this field with possible solutions and future opportunities are discussed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  PubMed  Google Scholar 

  2. Tan C, Zhang H (2015) Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem Soc Rev 44(9):2713–2731

    Article  CAS  PubMed  Google Scholar 

  3. Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D (2015) Silicene field-effect transistors operating at room temperature. Nat Nanotechnol 10(3):227–231

    Article  CAS  PubMed  Google Scholar 

  4. Xing C, Jing G, Liang X, Qiu M, Li Z, Cao R, Li X, Fan D, Zhang H (2017) Graphene oxide/black phosphorus nanoflake aerogels with robust thermo-stability and significantly enhanced photothermal properties in air. Nanoscale 9(24):8096–8101

    Article  CAS  PubMed  Google Scholar 

  5. Ma R, Sasaki T (2015) Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc Chem Res 48(1):136–143

    Article  CAS  PubMed  Google Scholar 

  6. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23(37):4248–4253

    Article  CAS  PubMed  Google Scholar 

  7. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th Anniversary Article: MXenes: a new family of two-dimensional materials. Adv Mater 26(7):992–1005

    Article  CAS  PubMed  Google Scholar 

  8. Kong QQ, Zhang HH, Yuan ZL, Liu JM, Li LX, Fan YP, Fan GX, Liu BZ (2020) Hamamelis-like K2Ti6O13 synthesized by alkali treatment of Ti3C2 MXene: catalysis for hydrogen storage in MgH2. Acs Sustain Chem Eng 8(12):4755–4763

    Article  CAS  Google Scholar 

  9. Chen JY, Huang Q, Huang HY, Mao LC, Liu MY, Zhang XY, Wei Y (2020) Recent progress and advances in the environmental applications of MXene related materials. Nanoscale 12(6):3574–3592

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Yu J, Guo D, Li Z, Su Y (2020) Ti3C2Tx MXene/graphene nanocomposites: synthesis and application in electrochemical energy storage. J Alloys Compds 815:152403

    Article  CAS  Google Scholar 

  11. Yu L, Fan Z, Shao Y, Tian Z, Sun J, Liu Z (2019) Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv Energy Mater. https://doi.org/10.1002/aenm.201901839

    Article  Google Scholar 

  12. Zhang X, Zhang ZH, Zhou Z (2018) MXene-based materials for electrochemical energy storage. J Energy Chem 27(1):73–85

    Article  Google Scholar 

  13. Jian X, He M, Chen L, Zhang MM, Li R, Gao LJ, Fu F, Liang ZH (2019) Three-dimensional carambola-like MXene/polypyrrole composite produced by one-step co-electrodeposition method for electrochemical energy storage. Electrochim Acta 318:820–827

    Article  CAS  Google Scholar 

  14. Lorencova L, Gajdosova V, Hroncekova S, Bertok T, Blahutova J, Vikartovska A, Parrakova L, Gemeiner P, Kasak P, Tkac J (2019) 2D MXenes as perspective immobilization platforms for design of electrochemical nanobiosensors. Electroanalysis 31(10):1833–1844

    Article  CAS  Google Scholar 

  15. Yao SS, Li N, Ye HQ, Han K (2018) Synthesis of two-dimensional MXene and their applications in electrochemical energy storage. Prog Chem 30(7):932–946

    Google Scholar 

  16. Lukatskaya MR, Halim J, Dyatkin B, Naguib M, Gogotsi Y (2014) Room-temperature carbide- derived carbon synthesis by electrochemical etching of MAX phases. Angew Chem 126(19):4977–4980

    Article  Google Scholar 

  17. Barsoum WM (2013) MAX phases: properties of machinable ternary carbides and nitrides. Wiley, New York

    Book  Google Scholar 

  18. Wang F, Yang C, Duan C, Xiao D, Tang Y, Zhu J (2014) An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor. J Electrochem Soc 162(1):B16–B21

    Article  CAS  Google Scholar 

  19. Guo D, Ming F, Su H, Wu Y, Wahyudi W, Li M, Hedhili MN, Sheng G, Li L-J, Alshareef HN (2019) MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li–S battery. Nano Energy 61:478–485

    Article  CAS  Google Scholar 

  20. Qian A, Seo JY, Shi H, Lee JY, Chung CH (2018) Surface functional groups and electrochemical behavior in dimethyl sulfoxide-delaminated Ti3C2Tx MXene. Chemsuschem 11(21):3719–3723

    Article  CAS  PubMed  Google Scholar 

  21. Yu T, Breslin CB (2020) Two-dimensional titanium carbide MXenes and their emerging applications as electrochemical sensors. J Electrochem Soc 167(3):037514

    Article  CAS  Google Scholar 

  22. Lipatov A, Alhabeb M, Lukatskaya MR, Boson A, Gogotsi Y, Sinitskii A (2016) Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater 2(12):1600255

    Article  CAS  Google Scholar 

  23. Anasori B, Shi C, Moon EJ, Xie Y, Voigt CA, Kent PR, May SJ, Billinge SJ, Barsoum MW, Gogotsi Y (2016) Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horizons 1(3):227–234

    Article  CAS  PubMed  Google Scholar 

  24. Huang XX, Wang R, Jiao TF, Zou GD, Zhan FK, Yin JJ, Zhang LX, Zhou JX, Peng QM (2019) Facile preparation of hierarchical AgNP-loaded MXene/Fe3O4/polymer nanocomposites by electrospinning with enhanced catalytic performance for wastewater treatment. ACS Omega 4(1):1897–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma X, Tu X, Gao F, Xie Y, Huang X, Fernandez C, Qu F, Liu G, Lu L, Yu Y (2020) Hierarchical porous MXene/amino carbon nanotubes-based molecular imprinting sensor for highly sensitive and selective sensing of fisetin. Sens Actuators B 309:127815

    Article  CAS  Google Scholar 

  26. Zheng J, Wang B, Ding A, Weng B, Chen J (2018) Synthesis of MXene/DNA/Pd/Pt nanocomposite for sensitive detection of dopamine. J Electroanal Chem 816:189–194

    Article  CAS  Google Scholar 

  27. Wang H, Li H, Huang Y, Xiong M, Wang F, Li C (2019) A label-free electrochemical biosensor for highly sensitive detection of gliotoxin based on DNA nanostructure/MXene nanocomplexes. Biosens Bioelectron 142:111531

    Article  CAS  PubMed  Google Scholar 

  28. Govindhan M, Adhikari B-R, Chen A (2014) Nanomaterials-based electrochemical detection of chemical contaminants. RSC Adv 4(109):63741–63760

    Article  CAS  Google Scholar 

  29. Lee Y-G, Jang A (2017) Application of sensitive electrochemical sensing system for detecting bromate from disinfection process in desalination plant. Desalination 423:135–140

    Article  CAS  Google Scholar 

  30. Alahi MEE, Mukhopadhyay SC, Burkitt L (2018) Imprinted polymer coated impedimetric nitrate sensor for real-time water quality monitoring. Sens Actuators B 259:753–761

    Article  CAS  Google Scholar 

  31. Kalambate PK, Gadhari NS, Li X, Rao Z, Navale ST, Shen Y, Patil VR, Huang Y (2019) Recent advances in MXene–based electrochemical sensors and biosensors. TrAC Trends Anal Chem 120:115643

    Article  CAS  Google Scholar 

  32. Wang L, He Y, Hu J, Qi Q, Zhang T (2011) DC humidity sensing properties of BaTiO3 nanofiber sensors with different electrode materials. Sens Actuators B 153(2):460–464

    Article  CAS  Google Scholar 

  33. Zhu C, Yang G, Li H, Du D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87(1):230–249

    Article  CAS  PubMed  Google Scholar 

  34. Tan C, Cao X, Wu XJ, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117(9):6225–6331

    Article  CAS  PubMed  Google Scholar 

  35. Cai X, Yuting L, Bilu L, Hui-Ming C (2018) Preparation of 2D material dispersions and their applications. Chem Soc Rev 47(16):6224–6266

    Article  CAS  PubMed  Google Scholar 

  36. Huang K, Li Z, Lin J, Han G, Huang P (2018) Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev 47(14):5109–5124

    Article  CAS  PubMed  Google Scholar 

  37. Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036

    Article  CAS  Google Scholar 

  38. Zhang G, Liu H, Qu J, Li J (2016) Two-dimensional layered MoS2: rational design, properties and electrochemical applications. Energy Environ Sci 9(4):1190–1209

    Article  CAS  Google Scholar 

  39. Song S, Liu J, Zhou C, Jia Q, Luo H, Deng L, Wang X (2020) Nb2O5/Nb2CTx composites with different morphologies through oxidation of Nb2CTx MXene for high-performance microwave absorption. J Alloys Compds 843:155713

    Article  CAS  Google Scholar 

  40. Babar ZUD, Fatheema J, Arif N, Anwar MS, Gul S, Iqbal M, Rizwan S (2020) Magnetic phase transition from paramagnetic in Nb2AlC-MAX to superconductivity-like diamagnetic in Nb2C-MXene: an experimental and computational analysis. RSC Adv 10(43):25669–25678

    Article  Google Scholar 

  41. Zu DY, Song HR, Wang YW, Chao Z, Li Z, Wang G, Shen YM, Li CP, Ma J (2020) One-pot in-situ hydrothermal synthesis of CdS/Nb2O5/Nb2C heterojunction for enhanced visible-light-driven photodegradation. Appl Catal B 277:119140

    Article  CAS  Google Scholar 

  42. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW (2012) Two-dimensional transition metal carbides. ACS Nano 6(2):1322–1331

    Article  CAS  PubMed  Google Scholar 

  43. Lei J-C, Zhang X, Zhou Z (2015) Recent advances in MXene: preparation, properties, and applications. Front Phys 10(3):276–286

    Article  Google Scholar 

  44. Khazaei M, Arai M, Sasaki T, Chung CY, Venkataramanan NS, Estili M, Sakka Y, Kawazoe Y (2013) Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv Func Mater 23(17):2185–2192

    Article  CAS  Google Scholar 

  45. Kurtoglu M, Naguib M, Gogotsi Y, Barsoum MW (2012) First principles study of two-dimensional early transition metal carbides. Mrs Commun 2(4):133–137

    Article  CAS  Google Scholar 

  46. Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW (2014) Conductive two-dimensional titanium carbide ‘clay’with high volumetric capacitance. Nature 516(7529):78–81

    Article  CAS  PubMed  Google Scholar 

  47. Halim J, Lukatskaya MR, Cook KM, Lu J, Smith CR, Näslund L-Å, May SJ, Hultman L, Gogotsi Y, Eklund P (2014) Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater 26(7):2374–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma X-L, Cheng H-M, Ren W (2015) Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater 14(11):1135–1141

    Article  CAS  PubMed  Google Scholar 

  49. Srivastava P, Mishra A, Mizuseki H, Lee K-R, Singh AK (2016) Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS Appl Mater Interfaces 8(36):24256–24264

    Article  CAS  PubMed  Google Scholar 

  50. Naguib M, Halim J, Lu J, Cook KM, Hultman L, Gogotsi Y, Barsoum MW (2013) New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J Am Chem Soc 135(43):15966–15969

    Article  CAS  PubMed  Google Scholar 

  51. Halim J, Kota S, Lukatskaya MR, Naguib M, Zhao MQ, Moon EJ, Pitock J, Nanda J, May SJ, Gogotsi Y (2016) Synthesis and characterization of 2D molybdenum carbide (MXene). Adv Func Mater 26(18):3118–3127

    Article  CAS  Google Scholar 

  52. Wang L, Zhang H, Wang B, Shen C, Zhang C, Hu Q, Zhou A, Liu B (2016) Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron Mater Lett 12(5):702–710

    Article  CAS  Google Scholar 

  53. Zeng M, Chen Y, Li J, Xue H, Mendes RG, Liu J, Zhang T, Rümmeli MH, Fu L (2017) 2D WC single crystal embedded in graphene for enhancing hydrogen evolution reaction. Nano Energy 33:356–362

    Article  CAS  Google Scholar 

  54. Wang Z, Kochat V, Pandey P, Kashyap S, Chattopadhyay S, Samanta A, Sarkar S, Manimunda P, Zhang X, Asif S (2017) Metal immiscibility route to synthesis of ultrathin carbides, borides, and nitrides. Adv Mater 29(29):1700364

    Article  CAS  Google Scholar 

  55. Kang Z, Zheng Z, Wei H, Zhang Z, Tan X, Xiong L, Zhai T, Gao Y (2019) Controlled growth of an Mo2C—graphene hybrid film as an electrode in self-powered two-sided Mo2C—graphene/Sb2S0.42Se2.58/TiOZZ2 photodetectors. Sensors 19(5):1099

    Article  CAS  PubMed Central  Google Scholar 

  56. Geng DC, Zhao XX, Chen ZX, Sun WW, Fu W, Chen JY, Liu W, Zhou W, Loh KP (2017) Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv Mater 29(35):1700072

    Article  CAS  Google Scholar 

  57. Yang S, Zhang PP, Wang FX, Ricciardulli AG, Lohe MR, Blom PWM, Feng XL (2018) Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew Chem Int Ed 57(47):15491–15495

    Article  CAS  Google Scholar 

  58. Zou G, Guo J, Peng Q, Zhou A, Zhang Q, Liu B (2016) Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. J Mater Chem A 4(2):489–499

    Article  CAS  Google Scholar 

  59. Zhu J, Ha E, Zhao G, Zhou Y, Huang D, Yue G, Hu L, Sun N, Wang Y, Lee LYS (2017) Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coord Chem Rev 352:306–327

    Article  CAS  Google Scholar 

  60. Bai L-N, Kong L-Y, Wen J, Ma N, Gao H, Zhang X-T (2020) First-principles study of high performance lithium/sodium storage of Ti3C2T2 nanosheets as electrode materials. Chin Phys B 29(1):016802

    Article  CAS  Google Scholar 

  61. Chen Z, Yang X, Qiao X, Zhang N, Zhang C, Ma Z, Wang H (2020) Lithium-ion-engineered interlayers of V2C MXene as advanced host for flexible sulfur cathode with enhanced rate performance. J Phys Chem Lett 11(3):885–890

    Article  CAS  PubMed  Google Scholar 

  62. Wang L, Liu D, Lian W, Hu Q, Liu X, Zhou A (2020) The preparation of V2CTx by facile hydrothermal-assisted etching processing and its performance in lithium-ion battery. J Mater Res Technol Jmr&T 9(1):984–993

    Article  CAS  Google Scholar 

  63. Wang P, Lu X, Boyjoo Y, Wei X, Zhang Y, Guo D, Sun S, Liu J (2020) Pillar-free TiO2/Ti3C2 composite with expanded interlayer spacing for high-capacity sodium ion batteries. J Power Sources 451:227756

    Article  CAS  Google Scholar 

  64. Xue CT, He Y, Liu YJ, Saha P, Cheng QL (2019) Controlled synthesis of alkalized Ti3C2 MXene-supported -FeOOH nanoparticles as anodes for lithium-ion batteries. Ionics 25(7):3069–3077

    Article  CAS  Google Scholar 

  65. Yoon Y, Lee M, Kim SK, Bae G, Song W, Myung S, Lim J, Lee SS, Zyung T, An KS (2018) A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high-performance supercapacitor electrodes. Adv Energy Mater 8(15):1703173

    Article  CAS  Google Scholar 

  66. Mashtalir O, Naguib M, Mochalin VN, Dall’Agnese Y, Heon M, Barsoum MW, Gogotsi Y (2013) Intercalation and delamination of layered carbides and carbonitrides. Nat Commun 4(1):1–7

    Article  CAS  Google Scholar 

  67. Chia HL, Mayorga-Martinez CC, Antonatos N, Sofer Z, Gonzalez-Julian JJ, Webster RD, Pumera M (2020) MXene titanium carbide-based biosensor: strong dependence of exfoliation method on performance. Anal Chem 92(3):2452–2459

    Article  CAS  PubMed  Google Scholar 

  68. Naguib M, Unocic RR, Armstrong BL, Nanda J (2015) Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes.” Dalton Trans 44(20):9353–9358

    Article  CAS  PubMed  Google Scholar 

  69. Lu X, Hu J, Yao X, Wang Z, Li J (2006) Composite system based on chitosan and room-temperature ionic liquid: direct electrochemistry and electrocatalysis of hemoglobin. Biomacromol 7(3):975–980

    Article  CAS  Google Scholar 

  70. Lu X, Zhang H, Ni Y, Zhang Q, Chen J (2008) Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors. Biosens Bioelectron 24(1):93–98

    Article  CAS  PubMed  Google Scholar 

  71. Zheng W, Zheng Y, Jin K, Wang N (2008) Direct electrochemistry and electrocatalysis of hemoglobin immobilized in TiO2 nanotube films. Talanta 74(5):1414–1419

    Article  CAS  PubMed  Google Scholar 

  72. Wang J, Wang L, Di J, Tu Y (2009) Electrodeposition of gold nanoparticles on indium/tin oxide electrode for fabrication of a disposable hydrogen peroxide biosensor. Talanta 77(4):1454–1459

    Article  CAS  PubMed  Google Scholar 

  73. Sun W, Zhai Z, Wang D, Liu S, Jiao K (2009) Electrochemistry of hemoglobin entrapped in a Nafion/nano-ZnO film on carbon ionic liquid electrode. Bioelectrochemistry 74(2):295–300

    Article  CAS  PubMed  Google Scholar 

  74. Wang F, Yang C, Duan C, Xiao D, Tang Y, Zhu J (2015) An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor. J Electrochem Soc 162(1):B16–B21

    Article  CAS  Google Scholar 

  75. Zhang P, Jiang F, Chen H (2013) Enhanced catalytic hydrogenation of aqueous bromate over Pd/mesoporous carbon nitride. Chem Eng J 234:195–202

    Article  CAS  Google Scholar 

  76. Rasheed PA, Pandey RP, Rasool K, Mahmoud KA (2018) Ultra-sensitive electrocatalytic detection of bromate in drinking water based on Nafion/Ti3C2Tx (MXene) modified glassy carbon electrode. Sens Actuators B 265:652–659

    Article  CAS  Google Scholar 

  77. Ceto X, Saint CP, Chow CWK, Voelcker NH, Prieto-Simon B (2016) Electrochemical detection of N-nitrosodimethylamine using a molecular imprinted polymer. Sens Actuators B 237:613–620

    Article  CAS  Google Scholar 

  78. Goldkind L, Laine L (2006) A systematic review of NSAIDs withdrawn from the market due to hepatotoxicity: lessons learned from the bromfenac experience. Pharmacoepidemiol Drug Saf 15(4):213–220

    Article  CAS  PubMed  Google Scholar 

  79. Zhang Y, Jiang X, Zhang J, Zhang H, Li Y (2019) Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosens Bioelectron 130:315–321

    Article  CAS  PubMed  Google Scholar 

  80. Peng X, Zhang Y, Lu D, Guo Y, Guo S (2019) Ultrathin Ti3C2 nanosheets based “off-on” fluorescent nanoprobe for rapid and sensitive detection of HPV infection. Sens Actuators B 286:222–229

    Article  CAS  Google Scholar 

  81. Zhang ZZ, Guo M, Tang YH, Liu CB, Zhou J, Yuan JL, Gu JY (2020) High areal capacitance of vanadium oxides intercalated Ti3C2 MXene for flexible supercapacitors with high mass loading. Nanotechnology 31(16):165403

    Article  CAS  PubMed  Google Scholar 

  82. Ma X, Tu X, Gao F, Xie Y, Huang X, Fernandez C, Qu F, Liu G, Lu L, Yu Y (2020) Hierarchical porous MXene/amino carbon nanotubes-based molecular imprinting sensor for highly sensitive and selective sensing of fisetin. Sens Actuators B 309:127815

    Article  CAS  Google Scholar 

  83. Jung MG, Gund GS, Gogotsi Y, Park HS (2020) Electrochemical Activation of 2D MXene-based hybrid for high volumetric Mg-ion storage capacitance. Batteries Supercaps 3(4):354–360

    Article  CAS  Google Scholar 

  84. Lv XC, Pei FB, Feng SS, Wu Y, Chen SM, Han QL, Lei W (2020) Facile synthesis of protonated carbon nitride/Ti3C2Tx nanocomposite for simultaneous detection of Pb2+ and Cd2+. J Electrochem Soc 167(6):067509

    Article  CAS  Google Scholar 

  85. He Y, Wang LB, Wang XL, Shen CJ, Hu QK, Zhou AG, Liu XQ (2020) Surface reformation of 2D MXene by in situ LaF3- decorated and enhancement of energy storage in lithium-ion batteries. J Mater Sci: Mater Electron 31:6735–6743

    CAS  Google Scholar 

  86. Ding W, Wang S, Wu XZ, Wang YS, Li YY, Zhou PF, Zhou T, Zhou J, Zhuo SP (2020) Co0.85Se@C/Ti3C2Tx MXene hybrids as anode materials for lithium-ion batteries. J Alloys Compd 816:152566

  87. Xie X, Zhao M-Q, Anasori B, Maleski K, Ren CE, Li J, Byles BW, Pomerantseva E, Wang G, Gogotsi Y (2016) Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26:513–523

    Article  CAS  Google Scholar 

  88. Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y (2017) Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Func Mater 27(30):1701264

    Article  CAS  Google Scholar 

  89. Ying YL, Liu Y, Wang XY, Mao YY, Cao W, Hu P, Peng XS (2015) Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Appl Mater Interfaces 7(3):1795–1803

    Article  CAS  PubMed  Google Scholar 

  90. Zhang Y-J, Lan J-H, Wang L, Wu Q-Y, Wang C-Z, Bo T, Chai Z-F, Shi W-Q (2016) Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: a first-principles study. J Hazard Mater 308:402–410

    Article  CAS  PubMed  Google Scholar 

  91. Zou GD, Zhang ZW, Guo JX, Liu BZ, Zhang QR, Fernandez C, Peng QM (2016) Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Appl Mater Interfaces 8(34):22280–22286

    Article  CAS  PubMed  Google Scholar 

  92. Rakhi R, Nayak P, Xia C, Alshareef HN (2016) Novel amperometric glucose biosensor based on MXene nanocomposite. Sci Rep 6(1):1–10

    CAS  Google Scholar 

  93. Zhang Z, Li H, Zou G, Fernandez C, Liu B, Zhang Q, Hu J, Peng Q (2016) Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity. ACS Sustain Chem Eng 4(12):6763–6771

    Article  CAS  Google Scholar 

  94. Boota M, Anasori B, Voigt C, Zhao MQ, Barsoum MW, Gogotsi Y (2016) Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv Mater 28(7):1517–1522

    Article  CAS  PubMed  Google Scholar 

  95. Chen X, Zhao Y, Li L, Wang Y, Wang J, Xiong J, Du S, Zhang P, Shi X, Yu J (2020) MXene/polymer nanocomposites: preparation, properties, and applications. Polym Rev 61(1):80–115

    Article  CAS  Google Scholar 

  96. Yuan W, Yang K, Peng H, Li F, Yin F (2018) A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance. J Mater Chem A 6(37):18116–18124

    Article  CAS  Google Scholar 

  97. Du Y-T, Kan X, Yang F, Gan L-Y, Schwingenschlögl U (2018) MXene/graphene heterostructures as high-performance electrodes for Li-ion batteries. ACS Appl Mater Interfaces 10(38):32867–32873

    Article  CAS  PubMed  Google Scholar 

  98. Yu P, Cao G, Yi S, Zhang X, Li C, Sun X, Wang K, Ma Y (2018) Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale 10(13):5906–5913

    Article  CAS  PubMed  Google Scholar 

  99. Cai Y, Shen J, Ge G, Zhang Y, Jin W, Huang W, Shao J, Yang J, Dong X (2018) Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12(1):56–62

    Article  CAS  PubMed  Google Scholar 

  100. Xie Y, Gao F, Tu X, Ma X, Xu Q, Dai R, Huang X, Yu Y, Lu L (2019) Facile synthesis of MXene/electrochemically reduced graphene oxide composites and their application for electrochemical sensing of carbendazim. J Electrochem Soc 166(16):B1673

    Article  CAS  Google Scholar 

  101. Zheng J, Diao J, Jin Y, Ding A, Wang B, Wu L, Weng B, Chen J (2018) An inkjet printed Ti3C2-GO electrode for the electrochemical sensing of hydrogen peroxide. J Electrochem Soc 165(5):B227

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Beijing Municipal Commission of Education Project (No.KM201810015002), a project founded by the Beijing Institute of Graphic Communication (No. Ea201802 and Ea201805), Chinese Natural Science Foundation project (No. 51702019,51927806), a Cross Training Program for High Level Talents of Beijing Universities (No. 03150119003/004), and a Foundation for Innovation Team Building of Flexible Printed Electronics Materials and Technology (Grant No. 04190119001/057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, JC., Han, L. & Cao, Wy. Lamellar MXene: A novel 2D nanomaterial for electrochemical sensors. J Appl Electrochem 51, 1509–1522 (2021). https://doi.org/10.1007/s10800-021-01593-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01593-7

Keywords

Navigation