Skip to main content

Advertisement

Log in

Self-assembled Ti3C2Tx-MXene/PTh composite electrodes for electrochemical capacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently, MXene are being extensively utilized as an electrode material for electrochemical capacitors owing to its excellent electrochemical performance. Furthermore, its excellent properties are enhanced by compounding it with other materials as the electrode material of electrochemical capacitor. In this study, MXene has been obtained by selective etching, Polythiophene (PTh) was prepared by chemical oxidative polymerization, and MXene/PTh composites with different mass ratios have been synthesized by the vacuum filtration self-assembly method. MXene nanosheets have the comprehensive function of combining PTh nanoparticles, and acting as flexible substrates. PTh nanoparticles can provide high pseudo-capacitance and inhibit the stacking of MXene, thus achieving a good synergistic effect. The results demonstrate that the M/PTh-3 composite has the best capacitance with a maximum value of 265.96 F g−1. The specific capacitance remains at 91.5% even after 500 cycles, which demonstrates that the composite electrode is a promising material for the high-performance electrochemical capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017)

    Article  CAS  Google Scholar 

  2. Y. Liu, X. Peng, Recent advances of supercapacitors based on two-dimensional materials. Appl. Mater. Today. 8, 104–115 (2017)

    Article  Google Scholar 

  3. M. Boota, Y. Gogotsi, MXene—conducting polymer asymmetric pseudocapacitors. Adv. Energy Mater. 9, 1802917–1802924 (2019)

    Article  Google Scholar 

  4. Q. Xue, J. Sun, Y. Huang, M. Zhu, Z. Pei, H. Li, Y. Wang, N. Li, H. Zhang, C. Zhi, Recent progress on flexible and wearable supercapacitors. Small 13, 170817 (2017)

    Google Scholar 

  5. S. Nam, J.-N. Kim, S. Oh, J. Kim, C.W. Ahn, I.-K. Oh, Ti3C2Tx MXene for wearable energy devices: supercapacitors and triboelectric nanogenerators. APL Mater. 8, 110701 (2020)

    Article  CAS  Google Scholar 

  6. Y. Liu, J. Yu, D. Guo, Z. Li, Y. Su, Ti3C2Tx MXene/graphene nanocomposites: synthesis and application in electrochemical energy storage. J. Alloys Compd. 815, 152403 (2020)

    Article  CAS  Google Scholar 

  7. Q. Jiang, Y. Lei, H. Liang, K. Xi, C. Xia, H.N. Alshareef, Review of MXene electrochemical micro supercapacitors. Energy Stor. Mater. 27, 78–95 (2020)

    Article  Google Scholar 

  8. D. Wei, W. Wu, J. Zhu, C. Wang, C. Zhao, L. Wang, A facile strategy of polypyrrole nanospheres grown on Ti3C2-MXene nanosheets as advanced supercapacitor electrodes. J. Electroanal. Chem. 877, 114538 (2020)

    Article  CAS  Google Scholar 

  9. X. Wang, Y. Wang, D. Liu, X. Li, H. Xiao, Y. Ma, M. Xu, G. Yuan, G. Chen, Opening MXene ion transport channels by intercalating PANI nanoparticles from the self-assembly approach for high volumetric and areal energy density supercapacitors. ACS Appl. Mater. Interfaces. 13, 30633–30642 (2021)

    Article  CAS  Google Scholar 

  10. Y. Zhu, K. Rajouâ, S. Le Vot, O. Fontaine, P. Simon, F. Favier, Modifications of MXene layers for supercapacitors. Nano Energy. 73, 104734 (2020)

    Article  CAS  Google Scholar 

  11. M. Zhao, X. Xie, C. Ren, T. Makaryan, B. Anasori, G. Wang, Y. Gogotsi, Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29, 1702410 (2017)

    Article  Google Scholar 

  12. Y. Cheng, L. Wang, Y. Song, Y. Zhang, Deep insights into the exfoliation properties of MAX to MXenes and the hydrogen evolution performances of 2D MXenes. J. Mater. Chem. A. 7, 15862 (2019)

    Article  CAS  Google Scholar 

  13. G.S. Gund, J.H. Park, R. Harpalsinh, M. Kota, J.H. Shin, T.-I. Kim, Y. Gogotsi, H.S. Park, MXene/polymer hybrid materials for flexible AC-filtering electrochemical capacitors. Joule. 3, 164–176 (2019)

    Article  CAS  Google Scholar 

  14. Z. Chen, Y. Han, T. Li, X. Zhang, T. Wang, Z. Zhang, Preparation and electrochemical performances of doped MXene/poly(3,4-ethylenedioxythiophene) composites. Mater. Lett. 220, 305–308 (2018)

    Article  CAS  Google Scholar 

  15. L. Tong, M. Gao, C. Jiang, K. Cai, Ultra-high performance and flexible polypyrrole coated CNT paper electrodes for all-solid-state supercapacitors. J. Mater. Chem. A. 7, 10751–10760 (2019)

    Article  CAS  Google Scholar 

  16. Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017)

    Article  CAS  Google Scholar 

  17. Y. Wang, Y. Ding, X. Guo, G. Yu, Conductive polymers for stretchable supercapacitors. J. Nano Res. 12, 1978–1987 (2019)

    Article  CAS  Google Scholar 

  18. Y. Chen, K. Cai, C. Liu, H. Song, X. Yang, High-performance and breathable polypyrrole coated air-laid paper for flexible all-solid-state supercapacitors. Adv. Energy Mater. 7, 1701247 (2017)

    Article  Google Scholar 

  19. P. Shabeeba, M.S. Thayyil, M.P. Pillai, P.P. Soufeena, C.V. Niveditha, Electrochemical investigation of activated carbon electrode supercapacitors. Russ J Electrochem. 54, 302 (2018)

    Article  CAS  Google Scholar 

  20. M. Barakzehi, M. Montazer, F. Sharif, T. Norby, A. Chatzitakis, A textile-based wearable supercapacitor using reduced graphene oxide/polypyrrole composite. Acta. 305, 187–196 (2019)

    CAS  Google Scholar 

  21. S.S. Qureshi, S. Nimauddin, S.A. Mazari, S. Saeed, N.M. Mubarak, S.U. Khan, T.A. Saleh, Ultrasonic-assisted synthesis of polythiophene-carbon nanotubes composites as supercapacitors. J. Mater. Sci. Mater. Electron. 32, 16203–16214 (2021)

    Article  CAS  Google Scholar 

  22. M. Boota, C. Chen, L. Yang, A.I. Kolesnikov, J. Jiang, Probing molecular interactions at mxene—organic heterointerfaces. Chem. Mater. 32, 7884 (2020)

    Article  CAS  Google Scholar 

  23. L. Tong, C. Jiang, K. Cai, P. Wei, High-performance and freestanding PPy/Ti3C2Tx composite film for flexible all-solid-state supercapacitors. J. Power Sources. 465, 228267 (2020)

    Article  CAS  Google Scholar 

  24. P. Xu, H. Xiao, X. Liang, T. Zhang, F. Zhang, C. Liu, B. Lang, Q. Gao, A MXene-based EDA-Ti3C2Tx intercalation compound with expanded interlayer spacing as high performance supercapacitor electrode material. Carbon 173, 135–144 (2021)

    Article  CAS  Google Scholar 

  25. M. Peng, W. Yang, L. Li, K. Zhang, L. Wang, T. Hu, K. Yuan, Y. Chen, Chem. Commun. 57, 10731 (2021)

    Article  CAS  Google Scholar 

  26. P. Shabeeba, M.S. Thayyil, M.P. Pillai, P.P. Soufeena, C.V. Niveditha, Electrochemical investigation of activated carbon electrode supercapacitors. Russ J Electrochem. 54, 302 (2018)

    Article  CAS  Google Scholar 

  27. S.J. Rajasekaran, V. Raghavan, Facile synthesis of activated carbon derived from Eucalyptus globulus seed as efficient electrode material for supercapacitors. Diam Relat Mater. 109, 108038 (2018)

    Article  Google Scholar 

  28. K. Wu, J. Zhao, R. Wu, B. Ruan, H. Liu, M. Wu, The impact of Fe3+ doping on the flexible polythiophene electrodes for supercapacitors. J. Electroanal. Chem. 823, 527 (2018)

    Article  CAS  Google Scholar 

  29. Z. Li, C. Ma, Y. Wen, Z. Wei, X. Xing, J. Chu, C.C. Yu, K. Wang, Z. Wang, Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 13, 196 (2020)

    Article  CAS  Google Scholar 

  30. M. Boota, B. Anasori, C. Voigt, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv Mater 28, 1517–1522 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the National Natural Science Foundation of China (Nos. 22078254, 51874227), the Shaanxi Province Natural Science Basic Research Project (No. 2021JM-358), the Industrialization Cultivation Project of Shaanxi Provincial Department of Education (20JC025) and Xi'an Science and Technology project (2020KJRC0053). We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JX: Conception, supervision, funding and writing. YS: Analysis, experiment and writing. WW: Experiment, test, analyzed data and writing. YY: Drawing and writing. CT: Writing and Funding. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Changbin Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Shi, Y., Wang, W. et al. Self-assembled Ti3C2Tx-MXene/PTh composite electrodes for electrochemical capacitors. J Mater Sci: Mater Electron 33, 6636–6645 (2022). https://doi.org/10.1007/s10854-022-07838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07838-1

Navigation