Skip to main content
Log in

On the Relationship Between the Porosity and Initial Coulombic Efficiency of Porous Carbon Materials for the Anode in Lithium-Ion Batteries

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Herein, we present a new model to investigate the cause of the low initial coulombic efficiency of lithium-ion battery (LIB) porous carbon anodes and discover its relationship with the porosity of these materials. According to the proposed model, the capacity of porous carbon LIB anodes is in a direct relationship with their porosity, which reduces by the formation of the solid electrolyte interphase (SEI) layer occupying the cavities and decreasing the accessible surface area for the electrolyte. The introduced model in this study was compared with the data published in the literature and revealed a satisfactory agreement with them. As a result, it was concluded that the fraction of the mesopores occupied by SEI after the 1st cycle fluctuates around the value of 0.5 and is mostly in the range of 0.6−0.4. Thereby, it can be employed for the prediction of the first cycle coulombic efficiency (CE) of carbonaceous anodes as LIB anodes and optimization of their structure.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data and materials involved in this research are available in the manuscript.

References

  1. Fathi, A.R., Riahifar, R., Raissi, B., Sahba Yaghmaee, M., Ghorbanzadeh, M.: Optimization of cathode material components by means of experimental design for li-ion batteries. J. Electron. Mater. 49(11), 6547–6558 (2020)

    Article  CAS  Google Scholar 

  2. Sabetzadeh, N., Falamaki, C., Riahifar, R., Yaghmaee, M.S., Raissi, B.: Plasma treatment of polypropylene membranes coated with zeolite/organic binder layers: Assessment of separator performance in lithium-ion batteries. Solid State Ionics. 363, 115589 (2021)

    Article  CAS  Google Scholar 

  3. Shaker, M., Ghazvini, A.A.S., Cao, W., Riahifar, R., Ge, Q.: Biomass-derived porous carbons as supercapacitor electrodes—a review. New Carbon Mater. 36(3), 546–572 (2021)

    Article  Google Scholar 

  4. Shaker, M., Riahifar, R., Li, Y.: A review on the superb contribution of carbon and graphene quantum dots to electrochemical capacitors’ performance: synthesis and application. FlatChem 22, 100171 (2020)

    Article  CAS  Google Scholar 

  5. Asl, V.Z., Chini, S.F., Zhao, J., Palizdar, Y., Shaker, M., Sadeghi, A.: Corrosion properties and surface free energy of the Zn-Al LDH/rGO coating on MAO pretreated AZ31 magnesium alloy. Surface Coat. Technol.  p. 127764. (2021)

  6. Leng, X., Chen, S., Yang, K., Chen, M., Shaker, M., Vdovin, E.E., Ge, Q., Novoselov, K.S., Andreeva, D.V.: Introduction to two-dimensional materials. Molecular interactions on two-dimensional materials, World Scientific. p. 1-41 (2022)

  7. Shaker, M., Salahinejad, E., Cao, W., Meng, X., Zahedi Asl, V., Ge, Q.: The effect of graphene orientation on permeability and corrosion initiation under composite coatings. Constr. Build. Mater. 319, 126080 (2022)

    Article  CAS  Google Scholar 

  8. Deng, X., Li, S., Wang, J., Nan, D., Dong, J., Liu, J.: Nitrogen-doped zinc/cobalt mixed oxide micro-/nanospheres for high-rate lithium-ion battery anode. J. Mater. Res. 34(18), 3204–3211 (2019)

    Article  CAS  Google Scholar 

  9. Cao, X., Chen, S., Wang, G.: Porous carbon particles derived from natural peanut shells as lithium ion battery anode and its electrochemical properties. Electron. Mater. Lett. 10(4), 819–826 (2014)

    Article  CAS  Google Scholar 

  10. Leng, X., Chen, S., Yang, K., Chen, M., Shaker, M., Vdovin, E.E., Ge, Q., Novoselov, K.S., Andreeva, D.V.: Technology and applications of graphene oxide membranes, in Molecular Interactions On Two-dimensional Materials. World Scientific. p. 379–422. (2022)

  11. Paronyan, T.M.: Weakened interlayer interaction of incommensurate graphene as a key factor for superior lithium intercalation. J. Mater. Res. 36(14), 2872–2880 (2021)

    Article  CAS  Google Scholar 

  12. Xu, Z., Chen, J., Wu, M., Chen, C., Song, Y., Wang, Y.: Effects of different atmosphere on electrochemical performance of hard carbon electrode in sodium ion battery. Electron. Mater. Lett. 15(4), 428–436 (2019)

    Article  CAS  Google Scholar 

  13. Zhang, Y., Li, X., Wang, Q., Miao, J., Tian, H., Liu, X., Shen, N., Li, X.: A wax gourd flesh-derived porous carbon activated by different activating agents as lithium ion battery anode material. J. Mater. Sci. Mater. Electron. 32(19), 23776–23785 (2021)

    Article  CAS  Google Scholar 

  14. Yu, K., Wang, B., Bai, P., Liang, C., Jin, W.: Wheat straw cellulose amorphous porous carbon used as anode material for a lithium-ion battery. J. Electron. Mater. 50(11), 6438–6447 (2021)

    Article  CAS  Google Scholar 

  15. Zhang, Q., Li, M., Meng, Y., Li, A.: KOH Activated nitrogen doped hard carbon nanotubes as high performance anode for lithium ion batteries. Electron. Mater. Lett. 14(6), 755–765 (2018)

    Article  CAS  Google Scholar 

  16. Yang, X., Li, C., Zhang, G., Yang, C.: Polystyrene-derived carbon with hierarchical macro–meso–microporous structure for high-rate lithium-ion batteries application. J. Mater. Sci. 50(20), 6649–6655 (2015)

    Article  CAS  Google Scholar 

  17. Guo, W., Li, X., Xu, J., Liu, H.K., Ma, J., Dou, S.X.: Growth of highly nitrogen-doped amorphous carbon for lithium-ion battery anode. Electrochim. Acta 188, 414–420 (2016)

    Article  CAS  Google Scholar 

  18. Shaker, M., Sadeghi Ghazvini, A.A., Feng, S., Cao, W., Meng, X., Ge, Q., Riahifar, R.: Improving the Electrochemical Performance of Pouch Cell Electric Double-Layer Capacitors by Integrating Graphene Nanoplates into Activated Carbon. Energy Technology. n/a(n/a): p. 2100735

  19. Peng, Y.-T., Lo, C.-T.: Effect of microstructure and morphology of electrospun ultra-small carbon nanofibers on anode performances for lithium ion batteries. J. Electrochem. Soc. 162(6), A1085–A1093 (2015)

    Article  CAS  Google Scholar 

  20. Sadeghi Ghazvini, A.A., Taheri-Nassaj, E., Raissi, B., Riahifar, R., Sahba Yaghmaee, M., Shaker, M.: Co-electrophoretic deposition of Co3O4 and graphene nanoplates for supercapacitor electrode. Mater. Lett. 285, 129195 (2021)

    Article  CAS  Google Scholar 

  21. Shaker, M., Ghazvini, A.A.S., Yaghmaee, M.S., Riahifar, R., Raissi, B., Cao, W., Ge, Q., Wang, B.: Prediction of size-and shape-dependent lithium storage capacity of carbon nano-spheres (quantum dots). J. Nanopart. Res. 23(8), 1–9 (2021)

    Article  Google Scholar 

  22. Chen, L., Zhang, Y., Lin, C., Yang, W., Meng, Y., Guo, Y., Li, M., Xiao, D.: Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries. J. Mater. Chem. A. 2(25), 9684–9690 (2014)

    Article  CAS  Google Scholar 

  23. Jiang, H., Lee, P.S., Li, C.: 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 6(1), 41–53 (2013)

    Article  CAS  Google Scholar 

  24. Patil, A., Patil, V., Wook Shin, D., Choi, J.-W., Paik, D.-S., Yoon, S.-J.: Issue and challenges facing rechargeable thin film lithium batteries. Mater. Res. Bull. 43(8), 1913–1942 (2008)

    Article  CAS  Google Scholar 

  25. Zhou, H., Zhu, S., Hibino, M., Honma, I., Ichihara, M.: Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv. Mater. 15(24), 2107–2111 (2003)

    Article  CAS  Google Scholar 

  26. Fang, B., Kim, M.-S., Kim, J.H., Lim, S., Yu, J.-S.: Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance. J. Mater. Chem. 20(45), 10253–10259 (2010)

    Article  CAS  Google Scholar 

  27. Shaker, M., Ghazvini, A.A.S., Qureshi, F.R., Riahifar, R.: A criterion combined of bulk and surface lithium storage to predict the capacity of porous carbon lithium-ion battery anodes: lithium-ion battery anode capacity prediction. Carbon Lett. (2021)

  28. Yang, J., Zhou, X., Li, J., Zou, Y., Tang, J.: Study of nano-porous hard carbons as anode materials for lithium ion batteries. Mater. Chem. Phys. 135(2–3), 445–450 (2012)

    Article  CAS  Google Scholar 

  29. Yang, X., Wei, C., Sun, C., Li, X., Chen, Y.: High performance anode of lithium-ion batteries derived from an advanced carbonaceous porous network. J. Alloys Compd. 693, 777–781 (2017)

    Article  CAS  Google Scholar 

  30. Song, R., Song, H., Zhou, J., Chen, X., Wu, B., Yang, H.Y.: Hierarchical porous carbon nanosheets and their favorable high-rate performance in lithium ion batteries. J. Mater. Chem. 22(24), 12369–12374 (2012)

    Article  CAS  Google Scholar 

  31. Wang, Z., Zhang, F., Lu, Y., Zhai, B., Zhai, S., Xiao, Z., An, Q., Yu, C., Gao, S.: Facile synthesis of three-dimensional porous carbon sheets from a water-soluble biomass source sodium alginate for lithium ion batteries. Mater. Res. Bull. 83, 590–596 (2016)

    Article  CAS  Google Scholar 

  32. Yang, X., Li, X., Li, Z., Zhang, G., Wu, D.: Mesoporous wormholelike carbon with controllable nanostructure for lithium ion batteries application. Mater. Res. Bull. 66, 83–87 (2015)

    Article  CAS  Google Scholar 

  33. Guo, D.C., Han, F., Lu, A.H.: Porous Carbon anodes for a high capacity lithium-ion battery obtained by incorporating silica into benzoxazine during polymerization. Chem. Eur. J. 21(4), 1520–1525 (2015)

    Article  CAS  Google Scholar 

  34. Ou, J., Zhang, Y., Chen, L., Guo, Y., Xiao, D.: Hierarchical porous carbons fabricated from silica via flame synthesis as anode materials for high-performance lithium-ion batteries. Ionics. 21(7), 1881–1891 (2015)

    Article  CAS  Google Scholar 

  35. Chen, Y., Shi, L., Li, A., Zhang, S., Guo, M., Chen, X., Zhou, J., Song, H.: Capacity enhancement of porous carbon electrodes during long-term cycling in lithium-ion batteries. J. Electrochem. Soc. 164(9), A2000 (2017)

Download references

Acknowledgements

The authors are thankful to Professor Hans-Peter Steinrück for his useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Shaker.

Ethics declarations

Conflict of interest

The authors declare that they do have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaker, M., Sadeghi Ghazvini, A., Riahifar, R. et al. On the Relationship Between the Porosity and Initial Coulombic Efficiency of Porous Carbon Materials for the Anode in Lithium-Ion Batteries. Electron. Mater. Lett. 18, 400–406 (2022). https://doi.org/10.1007/s13391-022-00354-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00354-8

Keywords

Navigation