Skip to main content
Log in

KOH Activated Nitrogen Doped Hard Carbon Nanotubes as High Performance Anode for Lithium Ion Batteries

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In situ nitrogen doped hard carbon nanotubes (NHCNT) were fabricated by pyrolyzing tubular nitrogen doped conjugated microporous polymer. KOH activated NHCNT (K-NHCNT) were also prepared to improve their porous structure. XRD, SEM, TEM, EDS, XPS, Raman spectra, N2 adsorption–desorption, galvanostatic charging–discharge, cyclic voltammetry and EIS were used to characterize the structure and performance of NHCNT and K-NHCNT. XRD and Raman spectra reveal K-NHCNT own a more disorder carbon. SEM indicate that the diameters of K-NHCNT are smaller than that of NHCNT. TEM and EDS further indicate that K-NHCNT are hollow carbon nanotubes with nitrogen uniformly distributed. N2 adsorption–desorption analysis reveals that K-NHCNT have an ultra high specific surface area of 1787.37 m2 g−1, which is much larger than that of NHCNT (531.98 m2 g−1). K-NHCNT delivers a high reversible capacity of 918 mAh g−1 at 0.6 A g−1. Even after 350 times cycling, the capacity of K-NHCNT cycled after 350 cycles at 0.6 A g−1 is still as high as 591.6 mAh g−1. Such outstanding electrochemical performance of the K-NHCNT are clearly attributed by its superior characters, which have great advantages over those commercial available carbon nanotubes (200–450 mAh g−1) not only for its desired electrochemical performance but also for its easily and scaling-up preparation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Scrosati, B., Hassoun, J., Sun, Y.-K.: Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4(9), 3287–3295 (2011)

    Article  Google Scholar 

  2. Larcher, D., Tarascon, J.M.: Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015)

    Article  Google Scholar 

  3. Tarascon, J.-M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    Article  Google Scholar 

  4. Balogun, M.-S., Qiu, W., Luo, Y., Meng, H., Mai, W., Onasanya, A., Olaniyi, T.K., Tong, Y.: A review of the development of full cell lithium-ion batteries: the impact of nanostructured anode materials. Nano Res. 9(10), 2823–2851 (2016)

    Article  Google Scholar 

  5. Zhang, Q., Mei, J., Wang, X., Tang, F., Fan, W., Lu, W.: High performance spinel LiNi0.5Mn1.5O4 cathode material by lithium polyacrylate coating for lithium ion battery. Electrochim. Acta 143, 265–271 (2014)

    Article  Google Scholar 

  6. Guoping, W., Bolan, Z., Min, Y., Xiaoluo, X., Meizheng, Q., Zuolong, Y.: A modified graphite anode with high initial efficiency and excellent cycle life expectation. Solid State Ionics 176(9–10), 905–909 (2005)

    Article  Google Scholar 

  7. Bulusheva, L.G., Okotrub, A.V., Kurenya, A.G., Zhang, H., Zhang, H., Chen, X., Song, H.: Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon 49(12), 4013–4023 (2011)

    Article  Google Scholar 

  8. Li, X., Liu, J., Zhang, Y., Li, Y., Liu, H., Meng, X., Yang, J., Geng, D., Wang, D., Li, R., Sun, X.: High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application. J. Power Sources 197, 238–245 (2012)

    Article  Google Scholar 

  9. Seman, R.N.A.R., Azam, M.A., Mohamad, A.A.: Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors. Renew. Sustain. Energy Rev. 75, 644–659 (2017)

    Article  Google Scholar 

  10. de las Casas, C., Li, W.: A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 208, 74–85 (2012)

    Article  Google Scholar 

  11. Yang, S., Huo, J., Song, H., Chen, X.: A comparative study of electrochemical properties of two kinds of carbon nanotubes as anode materials for lithium ion batteries. Electrochim. Acta 53(5), 2238–2244 (2008)

    Article  Google Scholar 

  12. Xiong, Z., Yun, Y.S., Jin, H.J.: Applications of carbon nanotubes for lithium ion battery anodes. Materials (Basel) 6(3), 1138–1158 (2013)

    Article  Google Scholar 

  13. Kawasaki, S., Hara, T., Iwai, Y., Suzuki, Y.: Metallic and semiconducting single-walled carbon nanotubes as the anode material of Li ion secondary battery. Mater. Lett. 62(17–18), 2917–2920 (2008)

    Article  Google Scholar 

  14. Lee, B.-S., Son, S.-B., Park, K.-M., Yu, W.-R., Oh, K.-H., Lee, S.-H.: Anodic properties of hollow carbon nanofibers for Li-ion battery. J. Power Sources 199, 53–60 (2012)

    Article  Google Scholar 

  15. Zhou, X., Tang, J., Yang, J., Xie, J., Huang, B.: Seaweed-like porous carbon from the decomposition of polypyrrole nanowires for application in lithium ion batteries. J. Mater. Chem. A 1(16), 5037–5044 (2013)

    Article  Google Scholar 

  16. Peng, Y.-T., Lo, C.-T.: Electrospun porous carbon nanofibers as lithium ion battery anodes. J. Solid State Electrochem. 19(11), 3401–3410 (2015)

    Article  Google Scholar 

  17. Gaddam, R.R., Yang, D., Narayan, R., Raju, K., Kumar, N.A., Zhao, X.S.: Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26, 346–352 (2016)

    Article  Google Scholar 

  18. Kakunuri, M., Sharma, C.S.: Candle soot derived fractal-like carbon nanoparticles network as high-rate lithium ion battery anode material. Electrochim. Acta 180, 353–359 (2015)

    Article  Google Scholar 

  19. Zeng, S.-Z., Yao, Y., Zeng, X., He, Q., Zheng, X., Chen, S., Tu, W., Zou, J.: A composite of hollow carbon nanospheres and sulfur-rich polymers for lithium-sulfur batteries. J. Power Sources 357, 11–18 (2017)

    Article  Google Scholar 

  20. Zou, S., Xu, X., Zhu, Y., Cao, C.: Microwave-assisted preparation of hollow porous carbon spheres and as anode of lithium-ion batteries. Microporous Mesoporous Mater. 251, 114–121 (2017)

    Article  Google Scholar 

  21. Mondal, A.K., Kretschmer, K., Zhao, Y., Liu, H., Fan, H., Wang, G.: Naturally nitrogen doped porous carbon derived from waste shrimp shells for high-performance lithium ion batteries and supercapacitors. Microporous Mesoporous Mater. 246, 72–80 (2017)

    Article  Google Scholar 

  22. Li, M., Wu, Y., Zhao, F., Wei, Y., Wang, J., Jiang, K., Fan, S.: Cycle and rate performance of chemically modified super-aligned carbon nanotube electrodes for lithium ion batteries. Carbon 69, 444–451 (2014)

    Article  Google Scholar 

  23. Li, A., Lu, R.F., Wang, Y., Wang, X., Han, K.L., Deng, W.Q.: Lithium-doped conjugated microporous polymers for reversible hydrogen storage. Angew. Chem. Int. Ed. Engl. 49(19), 3330–3333 (2010)

    Article  Google Scholar 

  24. Chen, Y., Sun, H., Yang, R., Wang, T., Pei, C., Xiang, Z., Zhu, Z., Liang, W., Li, A., Deng, W.: Synthesis of conjugated microporous polymer nanotubes with large surface areas as absorbents for iodine and CO2 uptake. J. Mater. Chem. A 3(1), 87–91 (2015)

    Article  Google Scholar 

  25. Liu, H., Li, Q., Li, Q., Jin, W., Li, X., Hameed, A., Qiao, S.: Rational skeletal rigidity of conjugated microporous polythiophenes for gas uptake. Polym. Chem. 8(44), 6733–6740 (2017)

    Article  Google Scholar 

  26. Vilela, F., Zhang, K., Antonietti, M.: Conjugated porous polymers for energy applications. Energy Environ. Sci. 5(7), 7819–7832 (2012)

    Article  Google Scholar 

  27. Ma, B.C., Ghasimi, S., Landfester, K., Vilela, F., Zhang, K.A.I.: Conjugated microporous polymer nanoparticles with enhanced dispersibility and water compatibility for photocatalytic applications. J. Mater. Chem. A 3(31), 16064–16071 (2015)

    Article  Google Scholar 

  28. Zhang, K., Kopetzki, D., Seeberger, P.H., Antonietti, M., Vilela, F.: Surface area control and photocatalytic activity of conjugated microporous poly(benzothiadiazole) networks. Angew. Chem. Int. Ed. Engl. 52(5), 1432–1436 (2013)

    Article  Google Scholar 

  29. Zhang, Q., Dai, Q., Li, M., Wang, X., Li, A.: Incorporation of MnO nanoparticles inside porous carbon nanotubes originated from conjugated microporous polymers for lithium storage. J. Mater. Chem. A 4(48), 19132–19139 (2016)

    Article  Google Scholar 

  30. Wang, X., Wang, W., Zhu, Z., Yan, C., Zhang, Q.: Metal oxide-embedded porous carbon nanoparticles as high-performance anode materials for lithium ion batteries. Ionics 23(12), 3255–3263 (2017)

    Article  Google Scholar 

  31. Ding, Y., Chen, L., Pan, P., Du, J., Fu, Z., Qin, C., Wang, F.: Nitrogen-doped carbon coated MnO nanopeapods as superior anode materials for lithium ion batteries. Appl. Surf. Sci. 422, 1113–1119 (2017)

    Article  Google Scholar 

  32. Li, J., Zhang, F., Wang, C., Shao, C., Li, B., Li, Y., Wu, Q.-H., Yang, Y.: Self nitrogen-doped carbon nanotubes as anode materials for high capacity and cycling stability lithium-ion batteries. Mater. Des. 133, 169–175 (2017)

    Article  Google Scholar 

  33. Bao, L., Sun, H., Zhu, Z., Liang, W., Mu, P., Zang, J., Li, A.: Synthesis and properties of tubular-shape conjugated microporous polymers with high purity. Mater. Lett. 178, 5–9 (2016)

    Article  Google Scholar 

  34. Sun, H., La, P., Yang, R., Zhu, Z., Liang, W., Yang, B., Li, A., Deng, W.: Innovative nanoporous carbons with ultrahigh uptakes for capture and reversible storage of CO2 and volatile iodine. J. Hazard. Mater. 321, 210–217 (2017)

    Article  Google Scholar 

  35. Liu, Y., Xue, J.S., Zheng, T., Dahn, J.R.: Mechanism of lithium insertion in hardcarbons prepared by phrolysis of epoxy resins. Carbon 34(2), 193–200 (1996)

    Article  Google Scholar 

  36. Wang, J., Kaskel, S.: KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22(45), 23710–23725 (2012)

    Article  Google Scholar 

  37. Mao, Y., Duan, H., Xu, B., Zhang, L., Hu, Y., Zhao, C., Wang, Z., Chen, L., Yang, Y.: Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ. Sci. 5(7), 7950–7955 (2012)

    Article  Google Scholar 

  38. Pu, J., Li, C., Tang, L., Li, T., Ling, L., Zhang, K., Xu, Y., Li, Q., Yao, Y.: Impregnation assisted synthesis of 3D nitrogen-doped porous carbon with high capacitance. Carbon 94, 650–660 (2015)

    Article  Google Scholar 

  39. Zhang, Y., Sun, K., Liang, Z., Wang, Y., Ling, L.: N-doped yolk-shell hollow carbon sphere wrapped with graphene as sulfur host for high-performance lithium-sulfur batteries. Appl. Surf. Sci. 427, 823–829 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Nature Science Foundation of China (No. 21466020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingtang Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1760 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Li, M., Meng, Y. et al. KOH Activated Nitrogen Doped Hard Carbon Nanotubes as High Performance Anode for Lithium Ion Batteries. Electron. Mater. Lett. 14, 755–765 (2018). https://doi.org/10.1007/s13391-018-0085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0085-3

Keywords

Navigation