Skip to main content
Log in

Additive Effects of Copper and Alkali Metal Halides into Methylammonium Lead Iodide Perovskite Solar Cells

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Fabrication and characterization of methylammonium lead iodide perovskite solar cells incorporated with formamidinium iodide, copper halides, alkali metal halides and decaphenylcyclopentasilane were performed. Addition of CuCl and KI at 2% into the perovskite layer offered compact morphologies and crystal orientation in the perovskite layer, improving short circuit current densities, series resistance and open-circuit voltages related to conversion efficiencies. The stabilities of conversion efficiencies were improved for the perovskite layer incorporated with 2% CuCl and 2% NaI. The stabilities depended on the state of the surface morphologies and crystal orientation while suppressing decomposition reaction in the perovskite layer. The photovoltaic mechanisms were associated with promotion of carrier generation and diffusion in the crystalline layer. The electronic correlation was based on the charge transfer between 5p orbital of I ion and 3d orbital of Cu ion near valence band, promoting the carrier generation and diffusion related to the short circuit current densities.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dunfield, S.P., Bliss, L., Zhang, F., Luther, J.M., Zhu, K., Hest, M.F.A.M., Reese, M.O., Berry, J.J.: From defects to degradation: A mechanistic understanding of degradation in perovskite solar cell devices and modules. Adv. Energy Mater. 10, 1904054 (2020). https://doi.org/10.1002/aenm.201904054

    Article  CAS  Google Scholar 

  2. Jeong, M., Choi, I.W., Go, E.M., Cho, Y., Kim, M., Lee, B., Jeong, S., Jo, Y., Choi, H.W., Lee, J., Bae, J.-H., Kwak, S.K., Kim, D.S., Yang, C.: Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369, 1615–1620 (2020). https://doi.org/10.1126/science.abb7167

    Article  CAS  Google Scholar 

  3. McMeekin, D.P., Sadoughi, G., Rehman, W., Eperon, G.E., Saliba, M., Hörantner, M.T., Haghighirad, A., Sakai, N., Korte, L., Rech, B., Johnston, M.B., Herz, L.M., Snaith, H.J.: A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016). https://doi.org/10.1126/science.aad5845

    Article  CAS  Google Scholar 

  4. Suzuki, A., Okada, H., Oku, T.: Fabrication and characterization of CH3NH3PbI3-x-yBrxCly perovskite solar cells. Energies 9, 376 (2016). https://doi.org/10.3390/en9050376

    Article  CAS  Google Scholar 

  5. Kishimoto, T., Suzuki, A., Ueoka, N., Oku, T.: Effects of guanidinium addition to CH3NH3PbI3−xClx perovskite photovoltaic devices. J. Ceram. Soc. Jpn. 127, 491–497 (2019). https://doi.org/10.2109/jcersj2.18214

    Article  CAS  Google Scholar 

  6. Ueoka, N., Oku, T., Suzuki, A.: Additive effects of alkali metals on Cu-modified CH3NH3PbI3−δClδ photovoltaic devices. RSC Adv. 9, 24231–24240 (2019). https://doi.org/10.1039/C9RĂ8A

    Article  CAS  Google Scholar 

  7. Xu, W., Zheng, L., Zhang, X., Cao, Y., Meng, T., Wu, D., Liu, L., Hu, W., Gong, X.: Efficient perovskite solar cells fabricated by Co partially substituted hybrid perovskite. Adv. Energy Mater. 8, 1703178 (2018). https://doi.org/10.1002/aenm.201703178

    Article  CAS  Google Scholar 

  8. Gong, X., Guan, L., Pan, H., Sun, Q., Zhao, X., Li, H., Pan, H., Shen, Y., Shao, Y., Sun, L., Cui, Z., Ding, L., Wang, M.: Highly efficient perovskite solar cells via nickel passivation. Adv. Functional Mater. 28, 1804286 (2018). https://doi.org/10.1002/adfm.201804286

    Article  CAS  Google Scholar 

  9. Ueoka, N., Oku, T.: Effects of co-addition of sodium chloride and copper(II) bromide to mixed-cation mixed-halide perovskite photovoltaic devices. ACS Appl. Energy Mater. 3, 7272–7283 (2020). https://doi.org/10.1021/acsaem.0c00182

    Article  CAS  Google Scholar 

  10. Ueoka, N., Oku, T., Suzuki, A.: Effects of doping with Na, K, Rb, and formamidinium cations on (CH3NH3)0.99Rb0.01Pb0.99Cu0.01I3−x(Cl, Br)x perovskite photovoltaic cells. AIP Adv. 10, 125023 (2020). https://doi.org/10.1063/5.0029162

    Article  CAS  Google Scholar 

  11. Zhao, Z., Gu, F., Rao, H., Ye, S., Liu, Z., Bian, Z., Huang, C.: Metal halide perovskite materials for solar cells with long-term stability. Adv. Energy Mater. 9, 1802671 (2019). https://doi.org/10.1002/aenm.201802671

    Article  CAS  Google Scholar 

  12. Li, C., Wang, A., Xie, L., Deng, X., Liao, K., Yang, J., Liab, T., Hao, F.: Emerging alkali metal ion (Li+, Na+, K+ and Rb+) doped perovskite films for efficient solar cells: recent advances and prospects. J. Mater. Chem. A 7, 24150–24163 (2019). https://doi.org/10.1039/C9TA08130E

    Article  CAS  Google Scholar 

  13. Tanaka, H., Ohishi, Y., Oku, T.: Effects of Cu addition to perovskite CH3NH3PbI3−xClx photovoltaic devices with hot airflow during spin-coating. J. J. Appl. Phys. 57, 08RE10 (2018). https://doi.org/10.7567/JJAP.57.08RE10

    Article  Google Scholar 

  14. Suzuki, A., Oe, M., Oku, T.: Fabrication and characterization of Ni-, Co-, and Rb-incorporated CH3NH3PbI3 perovskite solar cells. J. Electronic Mater. 50, 1980–1995 (2021). https://doi.org/10.1007/s11664-021-08759-1

    Article  CAS  Google Scholar 

  15. Jaña, J.I., Muydinov, R., Rosado, P., Mirhosseini, H., Chugh, M., Nazarenko, O., Dirin, D.N., Heinrich, D., Wagner, M.R., Kühne, T.D., Szyszka, B., Kovalenko, M.V., Hoffmann, A.: Vibrational dynamics in lead halide hybrid perovskites investigated by Raman spectroscopy. Phys. Chem. Chem. Phys. 22, 5604–5614 (2020). https://doi.org/10.1039/C9CP06568G

    Article  Google Scholar 

  16. Piveteau, L., Morad, V., Kovalenko, M.V.: Solid-state NMR and NQR spectroscopy of lead-halide perovskite materials. J. Am. Chem. Soc. 142, 19413–19437 (2020). https://doi.org/10.1021/jacs.0c07338

    Article  CAS  Google Scholar 

  17. Tailor, N.K., Jalebi, M.A., Gupta, V., Hu, H., Dar, M.I., Li, G., Satapathi, S.: Recent progress in morphology optimization in perovskite solar cell. J. Mater. Chem. A 8, 21356–21386 (2020). https://doi.org/10.1039/D0TA00143K

    Article  CAS  Google Scholar 

  18. Paschal, C., Pogrebnoi, A., Pogrebnaya, T., Seriani, N.: Methylammonium tin iodide perovskite: structural, electronic and thermodynamic properties by a DFT study with different exchange–correlation functionals. SN Appl. Sci. 2, 718 (2020). https://doi.org/10.1007/s42452-020-2549-y

    Article  CAS  Google Scholar 

  19. Suzuki, A., Oku, T.: First-principles calculation study of electronic structures of alkali metals (Li, K, Na and Rb)-incorporated formamidinium lead halide perovskite compounds. Appl. Surf. Sci. 483, 912–921 (2019). https://doi.org/10.1016/j.apsusc.2019.04.049

    Article  CAS  Google Scholar 

  20. Suzuki, A., Miyamoto, Y., Oku, T.: Electronic structures, spectroscopic properties, and thermodynamic characterization of sodium- or potassium-incorporated CH3NH3PbI3 by first-principles calculation. J. Mater. Sci. 55, 9728–9738 (2020). https://doi.org/10.1007/s10853-020-04511-y

    Article  CAS  Google Scholar 

  21. Suzuki, A., Oku, T.: Effects of mixed-valence states of Eu-doped FAPbI3 perovskite crystals studied by first-principles calculation. Mater. Adv. 2, 2609–2616 (2021). https://doi.org/10.1039/D0MA00994F

    Article  CAS  Google Scholar 

  22. Valiente, R., Rodríguez, F.: Comment on “copper-substituted lead perovskite materials constructed with different halides for working (CH3NH3)2CuX4-based perovskite solar cells from experimental and theoretical view.” ACS Appl. Mater. Interfaces 12, 37807–37810 (2020). https://doi.org/10.1021/acsami.0c11480

    Article  CAS  Google Scholar 

  23. Chen, J., Ma, K., Dai, X., Xiao, J., Xu, L., Wang, Z.: The effects of heteroatoms-doping on the stability, electronic and magnetic properties of CH3NH3PbI3 perovskite. Surf. Interfaces 24, 101027 (2021). https://doi.org/10.1016/j.surfin.2021.101027

    Article  CAS  Google Scholar 

  24. Chen, L., Wan, L., Li, X., Zhang, W., Fu, S., Wang, Y., Li, S., Wang, H.Q., Song, W., Fang, J.: Inverted all-inorganic CsPbI2Br perovskite solar cells with promoted efficiency and stability by nickel incorporation. Chem. Mater. 31, 9032–9039 (2019). https://doi.org/10.1021/acs.chemmater.9b03277

    Article  CAS  Google Scholar 

  25. Suzuki, A., Oku, T.: Effects of transition metals incorporated into perovskite crystals on the electronic structures and magnetic properties by first-principles calculation. Heliyon 4, e00755 (2018). https://doi.org/10.1016/j.heliyon.2018.e00755

    Article  Google Scholar 

  26. Ren, G., Han, W., Deng, Y., Wu, W., Li, Z., Guo, J., Bao, H., Liu, C., Guo, W.: Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review. J. Mater. Chem. A 9, 4589–4625 (2021). https://doi.org/10.1039/D0TA11564A

    Article  CAS  Google Scholar 

  27. Zhu, H., Shen, Z., Pan, L., Han, J., Eickemeyer, F.T., Ren, Y., Li, X., Wang, S., Liu, H., Dong, X., Zakeeruddin, S.M., Hagfeldt, A., Liu, Y., Grätzel, M.: Low-cost dopant additive-free hole-transporting material for a robust perovskite solar cell with efficiency exceeding 21%. ACS Energy Lett. 6, 208–215 (2021). https://doi.org/10.1021/acsenergylett.0c02210

    Article  CAS  Google Scholar 

  28. Yu, Z., Hagfeldt, A., Sun, L.: The application of transition metal complexes in hole-transporting layers for perovskite solar cells: Recent progress and future perspectives. Coord. Chem. Rev. 406, 213143 (2020). https://doi.org/10.1016/j.ccr.2019.213143

    Article  CAS  Google Scholar 

  29. Sun, X., Deng, X., Li, Z., Xiong, B., Zhong, C., Zhu, Z., Li, Z., Jen, A.K.Y.: Dopant-free crossconjugated hole-transporting polymers for highly efficient perovskite solar cells. Adv. Sci. 7, 1903331 (2020). https://doi.org/10.1002/advs.201903331

    Article  CAS  Google Scholar 

  30. Taguchi, M., Suzuki, A., Oku, T., Fukunishi, S., Minami, S., Okita, M.: Effects of decaphenylcyclopentasilane addition on photovoltaic properties of perovskite solar cells. Coatings 8, 461 (2018). https://doi.org/10.3390/coatings8120461

    Article  CAS  Google Scholar 

  31. Taguchi, M., Suzuki, A., Oku, T., Ueoka, N., Minami, S., Okita, M.: Effects of annealing temperature on decaphenylcyclopentasilane-inserted CH3NH3PbI3 perovskite solar cells. Chem. Phys. Lett. 737, 136822 (2019). https://doi.org/10.1016/j.cplett.2019.136822

    Article  CAS  Google Scholar 

  32. Oku, T., Kandori, S., Taguchi, M., Suzuki, A., Okita, M., Minami, S., Fukunishi, S., Tachikawa, T.: Polysilane-inserted methylammonium lead iodide perovskite solar cells doped with formamidinium and potassium. Energies 13, 4776–4811 (2020). https://doi.org/10.3390/en13184776

    Article  CAS  Google Scholar 

  33. Suzuki, A., Taguchi, M., Oku, T., Okita, M., Minami, S., Fukunishi, S., Tachikawa, T.: Additive effects of methyl ammonium bromide or formamidinium bromide in methylammonium lead iodide perovskite solar cells using decaphenylcyclopentasilane. J. Mater. Sci.: Mater Electron. 32, 26449–26464 (2020). https://doi.org/10.1007/s10854-021-07023-w

    Article  CAS  Google Scholar 

  34. O’boyle, N.M., Tenderholt, A.L., Langner, K.M.: cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845 (2008). https://doi.org/10.1002/jcc.20823

    Article  CAS  Google Scholar 

  35. Li, Z., Yang, M., Park, J.-S., Wei, S.-H., Berry, J.J., Zhu, K.: Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28, 284–292 (2016). https://doi.org/10.1021/acs.chemmater.5b04107

    Article  CAS  Google Scholar 

  36. Oku, T.: Crystal Structures of perovskite halide compounds used for solar cell. Rev. Adv. Mater. Sci. 59, 264–30 (2020). https://doi.org/10.1515/rams-2020-0015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP 21K05261.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Suzuki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, A., Kitagawa, K., Oku, T. et al. Additive Effects of Copper and Alkali Metal Halides into Methylammonium Lead Iodide Perovskite Solar Cells. Electron. Mater. Lett. 18, 176–186 (2022). https://doi.org/10.1007/s13391-021-00325-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-021-00325-5

Keywords

Navigation