Skip to main content
Log in

Electronic structures, spectroscopic properties, and thermodynamic characterization of sodium- or potassium-incorporated CH3NH3PbI3 by first-principles calculation

  • Advanced Nano Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Influence of alkali metals such as sodium (Na) and potassium (K) in methyl ammonium lead iodide CH3NH3PbI3 perovskite crystal on electronic structures, spectroscopic properties, and thermodynamic properties was investigated by first-principles calculation. Partial substitution of CH3NH3 with Na or K in the perovskite crystal generated 3s, 3p, 4s, and 4p orbitals of Na or K above conduction band, which promoted the charge transfer from the alkali metals to the conduction band, accelerating the carrier generation and diffusion related to the photovoltaic performances. The molar absorption coefficient and oscillation strength were increased by a slight deviation of the charge distribution near ligand in the coordination structure. The splitting of chemical shift of 127I-NMR in magnetic field was caused by a slight perturbation of the coordination structure with nuclear quadrupole interaction based on electronic field gradient. Decrease of the Gibbs free energy and entropy indicated the thermodynamic stabilization without scattering carrier diffusion as phonon effectiveness. The decrease of the entropy was based on a slight change of stretching vibration mode of Pb–I bond with vending mode of N–H and C–H bonds in the infrared and Raman spectra. The minor addition of 12.5% Na or K into the perovskite crystal will improve the photovoltaic properties, open voltage related to band gap, and short-circuit current density based on the carrier diffusion with phonon effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zhumekenov AA, Saidaminov MI, Haque MA, Alarousu E, Sarmah SP, Murali B, Dursun I, Miao XH, Abdelhady AL, Wu T, Mohammed OF, Bakr OM (2016) Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Lett 1:32–37

    Article  CAS  Google Scholar 

  2. Umemoto Y, Suzuki A, Oku T (2017) Effects of halogen doping on the photovoltaic properties of HC(NH2)2PbI3 perovskite solar cells. AIP Conf Proc 1807:020011

    Article  Google Scholar 

  3. Suzuki K, Suzuki A, Zushi M, Oku T (2015) Microstructures and properties of CH3NH3PbI3−xClxCH3NH3PbI3−xClx hybrid solar cells. AIP Conf Proc 1649:96–101

    Article  CAS  Google Scholar 

  4. Suzuki A, Okada H, Oku T (2016) Fabrication and characterization of CH3NH3PbI3−xyBrxCly perovskite solar cells. Energies 9:376

    Article  Google Scholar 

  5. Pan YY, Su YH, Hsu CH, Huang LW, Kaun CC (2016) The electronic structure of organic–inorganic hybrid perovskite solar cell: a first-principles analysis. Comput Mater Sci 117:573–578

    Article  CAS  Google Scholar 

  6. McMeekin DP, Sadoughi G, Rehman W, Eperon GE, Saliba M, Horantner MT, Haghighirad A, Sakai N, Korte L, Rech B, Johnston MB, Herz LM, Snaith HJ (2016) A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351:151–155

    Article  CAS  Google Scholar 

  7. Zhao W, Yao Z, Yu F, Yang D, Liu S (2018) Alkali metal doping for improved CH3NH3PbI3 perovskite solar cells. Adv Sci 5:1700131

    Article  Google Scholar 

  8. Dimesso L, Wussler M, Mayer T, Mankel E, Jaegermann W (2016) Inorganic alkali lead iodide semiconducting APbI3 (A = Li, Na, K, Cs) and NH4PbI3 films prepared from solution: structure, morphology, and electronic structure. AIMS Mater Sci 3:737–755

    Article  CAS  Google Scholar 

  9. Zhao Z, Gu F, Rao H, Ye S, Liu Z, Bian Z, Huang C (2019) Metal halide perovskite materials for solar cells with long-term stability. Adv Energy Mater 9:1802671

    Article  Google Scholar 

  10. Suzuki A, Oku T (2018) Effects of transition metals incorporated into perovskite crystals on the electronic structures and magnetic properties by first-principles calculation. Heliyon 4:e00755

    Article  Google Scholar 

  11. Ueoka N, Oku T, Suzuki A (2019) Additive effects of alkali metals on Cu-modified CH3NH3PbI3−δClδ photovoltaic devices. RSC Adv 9:24231–24240

    Article  CAS  Google Scholar 

  12. García G, Palacios P, Proupin EM, Alejo ALM, Conesa JC, Wahnón P (2018) Influence of chromium hyperdoping on the electronic structure of CH3NH3PbI3 perovskite: a first-principles insight. Sci Rep 8:2511

    Article  Google Scholar 

  13. Tang Z, Uchida S, Bessho T, Kinoshita T, Wang H, Awai F, Jono R, Maitani MM, Nakazaki J, Kubo T, Segawa H (2018) Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance. Nano Energy 45:184–192

    Article  CAS  Google Scholar 

  14. Suzuki A, Oku T (2019) First-principles calculation study of electronic structures of alkali metals (Li, K, Na and Rb)-incorporated formamidinium lead halide perovskite compounds. Appl Surf Sci 483:912–921

    Article  CAS  Google Scholar 

  15. Chol JY (2019) Advances in modelling and simulation of halide perovskite for solar cell application. J. Phys. Energy 1:022011

    Google Scholar 

  16. Chen Y, Li N, Wang L, Li L, Xu Z, Jiao H, Liu P, Zhu C, Zai H, Sun M, Zou W, Zhang S, Xing G, Liu X, Wang J, Li D, Huang B, Chen Q, Zhou H (2019) Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nat Commun 10:1112

    Article  Google Scholar 

  17. Sakai N, Wang Z, Burlakov VM, Lim J, McMeekin D, Pathak S, Snaith HJ (2017) Controlling nucleation and growth of metal halide perovskite thin films for high-efficiency perovskite solar cells. Small 13:1602808

    Article  Google Scholar 

  18. Bi D, Yi C, Luo J, Decoppet JD, Zhang F, Zakeeruddin SM, Li X, Hagfeldt A, Gratzel M (2016) Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat Energy 1:16142

    Article  CAS  Google Scholar 

  19. Suzuki A, Kato M, Ueoka N, Oku T (2019) Additive effect of formamidinium chloride in methylammonium lead halide compound-based perovskite solar cells. J Electron Mater 48:3900–3907

    Article  CAS  Google Scholar 

  20. Hoefler SF, Trimmel G, Rath T (2017) Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatshe Chem 148:795–826

    Article  CAS  Google Scholar 

  21. Liu D, Li S, Bian F, Meng X (2018) First-principles investigation on the electronic and mechanical properties of Cs-doped CH3NH3PbI3. Materials 11:1141

    Article  Google Scholar 

  22. Tanaka H, Oku T, Ueoka N (2018) Structural stabilities of organic–inorganic perovskite crystals. Jpn J Appl Phys 57:08RE12

    Article  Google Scholar 

  23. Cao J, Tao SX, Bobbert PA, Wong CP, Zhao N (2018) Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration. Adv Mater 30:1707350

    Article  Google Scholar 

  24. Machiba H, Oku T, Kishimoto T, Ueoka N, Suzuki A (2019) Fabrication and evaluation of K-doped MA0.8FA0.1K0.1PbI3(Cl) perovskite solar cells. Chem Phys Lett 730:117–123

    Article  CAS  Google Scholar 

  25. Pina P, Triati DK, Wungu H, Rahmat H (2019) The characteristics of band structures and crystal binding in all-inorganic perovskite APbBr 3 studied by the first principle calculations using the density functional theory (DFT) method. Results Phys 15:102592

    Article  Google Scholar 

  26. Li N, Tao S, Chen Y, Niu X, Onwudinanti CK, Hu C, Qiu Z, Xu Z, Zheng G, Wang L, Zhang Y, Li L, Liu H, Lun Y, Hong J, Wang X, Liu Y, Xie H, Gao Y, Bai Y, Yang S, Brocks G, Chen Q, Zhou H (2019) Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat Energy 4:408–415

    Article  CAS  Google Scholar 

  27. Kubicki DJ, Prochowicz D, Hofstetter A, Zakeeruddin SM, Grätzel M, Emsley L (2017) Phase segregation in Cs-, Rb- and K-doped mixed-cation (MA)x(FA)1−xPbI3 hybrid perovskites from solid-state NMR. J Am Chem Soc 139:14173–14180

    Article  CAS  Google Scholar 

  28. Liu X, Zhang Y, Shi L, Liu Z, Huang J, Yun JS, Zeng Y, Pu A, Sun K, Hameiri Z, Stride JA, Seidel J, Green MA, Hao X (2018) Exploring inorganic binary alkaline halide to passivate defects in low-temperature-processed planar-structure hybrid perovskite solar cells. Adv Energy Mater 8:1800138

    Article  Google Scholar 

  29. Kubicki DJ, Prochowicz D, Hofstetter A, Zakeeruddin SM, Grätzel M, Emsley L (2018) Phase segregation in potassium-doped lead halide perovskites from 39K solid-state NMR at 21.1 T. J Am Chem Soc 140:7232–7238

    Article  CAS  Google Scholar 

  30. Schuck G, Többens DM, Müller MK, Efthimiopoulos I, Schorr S (2018) Infrared spectroscopic study of vibrational modes across the orthorhombic–tetragonal phase transition in methylammonium lead halide single crystals. J Phys Chem C 122:5227–5237

    Article  CAS  Google Scholar 

  31. Osorio MAP, Lin Q, Phillips RT, Milot RL, Herz LM, Johnston MB, Giustino F (2018) Raman spectrum of the organic–inorganic halide perovskite CH3NH3PbI3 from first principles and high-resolution low-temperature Raman measurements. J Phys Chem C 122:21703–21717

    Article  Google Scholar 

  32. Park M, Kornienko N, Lillo SER, Lai M, Neaton JB, Yang P, Mathies RA (2017) Critical role of methylammonium librational motion in methylammonium lead iodide (CH3NH3PbI3) perovskite photochemistry. Nano Lett 17:4151–4157

    Article  CAS  Google Scholar 

  33. Pitriana P, Wungu TDK, Hidayat R, Herman H (2019) Ab-initio calculation of APbI3 (A = Li, Na, Rb and Cs) perovskite crystal and their lattice constants optimization using density functional theory. IOP Conf Ser J Phys Conf Ser 1170:012023

    Article  CAS  Google Scholar 

  34. Ciccioli A, Latini A (2018) Thermodynamics and the intrinsic stability of lead halide perovskites CH3NH3PbX3. J Phys Chem Lett 9:3756–3765

    Article  CAS  Google Scholar 

  35. Schuck G, Lehmann F, Ollivier J, Mutka H, Schorr S (2019) Influence of chloride substitution on the rotational dynamics of methylammonium in MAPbI3–xClx perovskites. J Phys Chem C 123:11436–11446

    Article  CAS  Google Scholar 

  36. Mashiyama H, Kurihara Y, Azetsu T (1998) Disordered cubic perovskite structure of CH3NH3PbX3 (X = Cl, Br, I). J Korean Phys Soc 32:S156–S158

    CAS  Google Scholar 

  37. Oku T (2017) Solar cells and energy materials. De Gruyter, Berlin

    Google Scholar 

  38. Schelhas LT, Christians JA, Berry JJ, Toney MF, Tassone CJ, Luther JM, Stone KH (2016) Monitoring a silent phase transition in CH3NH3PbI3 solar cells via operando X-ray diffraction. ACS Energy Lett 1:1007–1012

    Article  CAS  Google Scholar 

  39. Jacobsson TJ, Schwan LJ, Ottosson M, Hagfeldt A, Edvinsson T (2015) Determination of thermal expansion coefficients and locating the temperature-induced phase transition in methylammonium lead perovskites using X-ray diffraction. Inorg Chem 54:10678–10685

    Article  CAS  Google Scholar 

  40. Whitfield PS, Herron N, Guise WE, Page K, Cheng YQ, Milas I, Crawford MK (2016) Structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide. Sci Rep 6:35685

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Suzuki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, A., Miyamoto, Y. & Oku, T. Electronic structures, spectroscopic properties, and thermodynamic characterization of sodium- or potassium-incorporated CH3NH3PbI3 by first-principles calculation. J Mater Sci 55, 9728–9738 (2020). https://doi.org/10.1007/s10853-020-04511-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04511-y

Navigation