Skip to main content
Log in

Additive effects of methyl ammonium bromide or formamidinium bromide in methylammonium lead iodide perovskite solar cells using decaphenylcyclopentasilane

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fabrication and characterization of methylammonium lead iodide perovskite solar cells incorporated with methylammonium bromide (MABr), formamidinium bromide (FABr), and decaphenylcyclopentasilane (DPPS) were performed. Additive effect of MABr or FABr into the perovskite layers inserted with DPPS as hole-transporting layer was investigated. Addition of 5% MABr or FABr into the perovskite layer improved the short-circuit current density, shunt resistance, and open-circuit voltages, which depended on the uniform morphologies while suppressing defects and pinholes in the perovskite layer. The stabilities of the photovoltaic performance depended on the degree of incorporation of MABr or FABr with the DPPS layer, which suppressed decomposition in the perovskite layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Yang, R. Yang, S. Priya, S.F. Liu, Recent advances in flexible perovskite solar cells: fabrication and applications. Angew. Chem. Int. Ed. 58, 4466–4483 (2019). https://doi.org/10.1002/anie.201809781

    Article  CAS  Google Scholar 

  2. D. Kim, H.J. Jung, I.J. Park, B.W. Larson, S.P. Dunfield, C. Xiao, J. Kim, J. Tong, P. Boonmongkolras, S.G. Ji, F. Zhang, S.R. Pae, M. Kim, S.B. Kang, V. Dravid, J.J. Berry, J.Y. Kim, K. Zhu, D.H. Kim, B. Shin, Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368, 155–160 (2020). https://doi.org/10.1126/science.aba3433

    Article  CAS  Google Scholar 

  3. S. Gu, R. Lin, Q. Han, Y. Gao, H. Tan, J. Zhu, Tin and mixed lead–tin halide perovskite solar cells: progress and their application in tandem solar cells. Adv. Mater. 32, 1907392 (2020). https://doi.org/10.1002/adma.201907392

    Article  CAS  Google Scholar 

  4. H. Zhang, H. Xu, X. Ji, J. Liang, Q. Yu, Progress toward applications of perovskite solar cells. Energy Fuels 34, 6624–6633 (2020). https://doi.org/10.1021/acs.energyfuels.0c00485

    Article  CAS  Google Scholar 

  5. M. Bauer, H. Zhu, T. Baumeler, Y. Liu, F.T. Eickemeyer, C. Lorenz, E.M. Osteritz, D. Hertel, S. Olthof, S.M. Zakeeruddin, K. Meerholz, M. Grätzel, P. Bäuerle, Cyclopentadiene-based hole-transport material for cost-reduced stabilized perovskite solar cells with power conversion efficiencies over 23%. Adv. Energy Mater. 11, 2003953 (2021). https://doi.org/10.1002/aenm.202003953

    Article  CAS  Google Scholar 

  6. S. Yuan, Y. Cai, S. Yang, H. Zhao, F. Qian, Y. Han, J. Sun, Z. Liu, S.F. Liu, Simultaneous cesium and acetate coalloying improves efficiency and stability of FA0.85MA0.15PbI3 perovskite solar cell with an efficiency of 21.95%. Sol. RRL 3, 1900220 (2019). https://doi.org/10.1002/solr.201900220

    Article  CAS  Google Scholar 

  7. J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu, F. Rotermund, Y.K. Kim, C.S. Moon, N.J. Jeon, J.P.C. Baena, V. Bulović, S.S. Shin, M.G. Bawendi, J. Seo, Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w

    Article  CAS  Google Scholar 

  8. E.A. Alharbi, A.Y. Alyamani, D.J. Kubicki, A.R. Uhl, B.J. Walder, A.Q. Alanazi, J. Luo, A.B. Caminal, A. Albadri, H. Albrithen, M.H. Alotaibi, J.E. Moser, S.M. Zakeeruddin, F. Giordano, L. Emsley, M. Grätzel, Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells. Nat. Commun. 10, 3008 (2019). https://doi.org/10.1038/s41467-019-10985-5

    Article  CAS  Google Scholar 

  9. K. Nishi, T. Oku, T. Kishimoto, N. Ueoka, A. Suzuki, Photovoltaic characteristics of CH3NH3PbI3 perovskite solar cells added with ethyl ammonium bromide and formamidinium iodide. Coating 10, 410 (2020). https://doi.org/10.3390/coatings10040410

    Article  CAS  Google Scholar 

  10. G. Kim, H. Min, K.S. Lee, D.Y. Lee, S.M. Yoon, S.I. Seok, Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020). https://doi.org/10.1126/science.abc4417

    Article  CAS  Google Scholar 

  11. R.D. Chavan, D. Prochowicz, M.M. Tavakoli, P. Yadav, C.K. Hong, Surface treatment of perovskite layer with guanidinium iodide leads to enhanced moisture stability and improved efficiency of perovskite solar cells. Adv. Mater. Interfaces 7, 2000105 (2020)

    Article  CAS  Google Scholar 

  12. T. Kishimoto, A. Suzuki, N. Ueoka, T. Oku, Effects of guanidinium addition to CH3NH3PbI3−xClx perovskite photovoltaic devices. J. Ceram. Soc. Jpn. 127, 491–497 (2019). https://doi.org/10.2109/jcersj2.18214

    Article  CAS  Google Scholar 

  13. H. Yu, Y. Xie, J. Zhang, J. Duan, X. Chen, Y. Liang, K. Wang, L. Xu, Thermal and humidity stability of mixed spacer cations 2D perovskite solar cells. Adv. Sci. 8, 2004510 (2021). https://doi.org/10.1002/advs.202004510

    Article  Google Scholar 

  14. P. Zardari, A. Rostami, H. Shekaari, p-Phenylenediaminium iodide capping agent enabled self-healing perovskite solar cell. Sci. Rep. 10, 20011 (2020). https://doi.org/10.1038/s41598-020-76365-y

    Article  CAS  Google Scholar 

  15. Y. Chen, N. Li, L. Wang, L. Li, Z. Xu, H. Jiao, P. Liu, C. Zhu, H. Zai, M. Sun, W. Zou, S. Zhang, G. Xing, X. Liu, J. Wang, D. Li, B. Huang, Q. Chen, H. Zhou, Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nat. Commun. 10, 1112 (2019). https://doi.org/10.1038/s41467-019-09093-1

    Article  CAS  Google Scholar 

  16. H. Machiba, T. Oku, T. Kishimoto, N. Ueoka, A. Suzuki, Fabrication and evaluation of K-doped MA0.8FA0.1K0.1PbI3(Cl) perovskite solar cells. Chem. Phys. Lett. 730, 117–123 (2019). https://doi.org/10.1016/j.cplett.2019.05.050

    Article  CAS  Google Scholar 

  17. N. Ueoka, T. Oku, A. Suzuki, Effects of doping with Na, K, Rb, and formamidinium cations on (CH3NH3)0.99Rb0.01Pb0.99Cu0.01I3-x(Cl, Br)x perovskite photovoltaic cells. AIP Adv. 10, 125023 (2020). https://doi.org/10.1063/5.0029162

    Article  CAS  Google Scholar 

  18. W. Ke, M.G. Kanatzidis, Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. 10, 965 (2019). https://doi.org/10.1038/s41467-019-08918-3

    Article  CAS  Google Scholar 

  19. J. Chen, K. Ma, X. Dai, J. Xiao, L. Xu, Z. Wang, The effects of heteroatoms-doping on the stability, electronic and magnetic properties of CH3NH3PbI3 perovskite. Surf. Interfaces 24, 101027 (2021). https://doi.org/10.1016/j.surfin.2021.101027

    Article  CAS  Google Scholar 

  20. N. Ueoka, T. Oku, Effects of co-addition of sodium chloride and copper(II) bromide to mixed-cation mixed-halide perovskite photovoltaic devices. ACS Appl. Energy Mater. 3, 7272–7283 (2020). https://doi.org/10.1021/acsaem.0c00182

    Article  CAS  Google Scholar 

  21. A. Suzuki, M. Oe, T. Oku, Fabrication and characterization of Ni-, Co-, and Rb-incorporated CH3NH3PbI3 perovskite solar cells. J. Electron. Mater. 50, 1980–1995 (2021). https://doi.org/10.1007/s11664-021-08759-1

    Article  CAS  Google Scholar 

  22. L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun, B. Dong, G. Zheng, Y. Huang, Y. Chen, L. Li, Z. Xu, N. Li, Z. Liu, Q. Chen, L.D. Sun, C.H. Yan, A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 363, 265–270 (2019). https://doi.org/10.1126/science.aau5701

    Article  CAS  Google Scholar 

  23. Z. Song, W. Xu, Y. Wu, S. Liu, W. Bi, X. Chen, H. Song, Incorporating of lanthanides ions into perovskite film for efficient and stable perovskite solar cells. Small 16, 2001770 (2020). https://doi.org/10.1002/smll.202001770

    Article  CAS  Google Scholar 

  24. Q. Li, Y. Zhao, W. Zhou, Z. Han, R. Fu, F. Lin, D. Yu, Q. Zhao, Halogen engineering for operationally stable perovskite solar cells via sequential deposition. Adv. Energy Mater. 9, 1902239 (2019). https://doi.org/10.1002/aenm.201902239

    Article  CAS  Google Scholar 

  25. T. Oku, Crystal structures of perovskite halide compounds used for solar cells. Rev. Adv. Mater. Sci. 59, 264–305 (2020). https://doi.org/10.1515/rams-2020-0015

    Article  CAS  Google Scholar 

  26. M. Liang, W. Lin, Z. Lan, J. Meng, Q. Zhao, X. Zou, I.E. Castelli, T. Pullerits, S.E. Canton, K. Zheng, Electronic structure and trap states of two-dimensional ruddlesden–popper perovskites with the relaxed Goldschmidt tolerance factor. ACS Appl. Electron. Mater. 2, 1402–1412 (2020). https://doi.org/10.1021/acsaelm.0c00179

    Article  CAS  Google Scholar 

  27. R. Hidayat, A.A. Nurunnizar, A. Fariz, H. Bahar, E.S. Rosa, S. Shobih, T. Oizumi, A. Fujii, M. Ozaki, Revealing the charge carrier kinetics in perovskite solar cells affected by mesoscopic structures and defect states from simple transient photovoltage measurements. Sci. Rep. 10, 19197 (2020). https://doi.org/10.1038/s41598-020-74603-x

    Article  CAS  Google Scholar 

  28. Q. Fu, X. Tang, B. Huang, T. Hu, L. Tan, L. Chen, Y. Chen, Recent progress on the long-term stability of perovskite solar cells. Adv. Sci. 5, 1700387 (2018). https://doi.org/10.1002/advs.201700387

    Article  CAS  Google Scholar 

  29. M. Jeong, I.W. Choi, E.M. Go, Y. Cho, M. Kim, B. Lee, S. Jeong, Y. Jo, H.W. Choi, J. Lee, J.H. Bae, S.K. Kwak, D.S. Kim, C. Yang, Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369, 1615–1620 (2020). https://doi.org/10.1126/science.abb7167

    Article  CAS  Google Scholar 

  30. W. Han, G. Ren, J. Liu, Z. Li, H. Bao, C. Liu, W. Guo, Recent progress of inverted perovskite solar cells with a modified PEDOT:PSS hole transport layer. ACS Appl. Mater. Interfaces 12, 49297–49322 (2020). https://doi.org/10.1021/acsami.0c13576

    Article  CAS  Google Scholar 

  31. H.D. Pham, T.C.J. Yang, S.M. Jain, G.J. Wilson, P. Sonar, Development of dopant-free organic hole transporting materials for perovskite solar cells. Adv. Energy Mater. 10, 1903326 (2020). https://doi.org/10.1002/aenm.201903326

    Article  CAS  Google Scholar 

  32. Y. Matsuo, K. Ogumi, I. Jeon, H. Wang, T. Nakagawa, Recent progress in porphyrin- and phthalocyanine-containing perovskite solar cells. RSC Adv. 10, 32678–32689 (2020). https://doi.org/10.1039/D0RA03234D

    Article  CAS  Google Scholar 

  33. A. Suzuki, H. Okumura, Y. Yamasaki, T. Oku, Fabrication and characterization of perovskite type solar cells using phthalocyanine complexes. Appl. Surf. Sci. 488, 586–592 (2019). https://doi.org/10.1016/j.apsusc.2019.05.305

    Article  CAS  Google Scholar 

  34. Z. Yu, L. Wang, X. Mu, C.C. Chen, Y. Wu, J. Cao, Y. Tang, Intramolecular electric field construction in metal phthalocyanine as dopant-free hole transporting material for stable perovskite solar cells with >21% efficiency. Angew. Chem. Int. Ed. 60, 6294–6299 (2021). https://doi.org/10.1002/anie.202016087

    Article  CAS  Google Scholar 

  35. S. Collavini, M. Saliba, W.R. Tress, P.J. Holzhey, S.F. Völker, K. Domanski, S.H.T. Cruz, A. Ummadisingu, S.M. Zakeeruddin, A. Hagfeldt, M. Grätzel, J.L. Delgado, Poly(ethylene glycol)–[60]fullerene-based materials for perovskite solar cells with improved moisture resistance and reduced hysteresis. ChemSusChem 11, 1032–1039 (2018). https://doi.org/10.1002/cssc.201702265

    Article  CAS  Google Scholar 

  36. Z. Liu, P. Liu, T. He, L. Zhao, X. Zhang, J. Yang, H. Yang, H. Liu, R. Qin, M. Yuan, Tuning surface wettability of buffer layers by incorporating polyethylene glycols for enhanced performance of perovskite solar cells. ACS Appl. Mater. Interfaces 12, 26670–26679 (2020). https://doi.org/10.1021/acsami.0c05527

    Article  CAS  Google Scholar 

  37. J. Pascual, J.L. Delgado, R.T. Zaera, Physicochemical phenomena and application in solar cells of perovskite:fullerene films. J. Phys. Chem. Lett. 9, 2893–2902 (2018). https://doi.org/10.1021/acs.jpclett.8b00968

    Article  CAS  Google Scholar 

  38. X. Ma, T. Zhang, B. Zhao, C. Liu, X. Li, H. Liu, G. Yang, Y. Chen, L. Jiang, X. Li, Functionalized CNTs as effective additives to improve the efficiency of perovskite solar cells. ACS Appl. Energy Mater. 3, 11674–11680 (2020). https://doi.org/10.1021/acsaem.0c01675

    Article  CAS  Google Scholar 

  39. J. Hu, X. Xiong, W. Guan, H. Long, Recent advances in carbon nanomaterial-optimized perovskite solar cells. Mater. Today Energy 21, 100769 (2021). https://doi.org/10.1016/j.mtener.2021.100769

    Article  CAS  Google Scholar 

  40. J. Peng, J.I. Khan, W. Liu, E. Ugur, T. Duong, Y. Wu, H. Shen, K. Wang, H. Dang, E. Aydin, X. Yang, Y. Wan, K.J. Weber, K.R. Catchpole, F. Laquai, S.D. Wolf, T.P. White, A universal double-side passivation for high open-circuit voltage in perovskite solar cells: role of carbonyl groups in poly(methyl methacrylate). Adv. Energy Mater. 8, 1801208 (2018). https://doi.org/10.1002/aenm.201801208

    Article  CAS  Google Scholar 

  41. J. Peng, D. Walter, Y. Ren, M. Tebyetekerwa, Y. Wu, T. Duong, Q. Lin, J. Li, T. Lu, M.A. Mahmud, O.L.C. Lem, S. Zhao, W. Liu, Y. Liu, H. Shen, L. Li, F. Kremer, H.T. Nguyen, D.Y. Choi, K.J. Weber, K.R. Catchpole, T.P. White, Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science 371, 390–395 (2021). https://doi.org/10.1126/science.abb8687

    Article  CAS  Google Scholar 

  42. L. Ma, Z. Yan, X. Zhou, Y. Pi, Y. Du, J. Huang, K. Wang, K. Wu, C. Zhuang, X. Han, A polymer controlled nucleation route towards the generalized growth of organic-inorganic perovskite single crystals. Nat. Commun. 12, 2023 (2021). https://doi.org/10.1038/s41467-021-22193-1

    Article  CAS  Google Scholar 

  43. M. Taguchi, A. Suzuki, T. Oku, S. Fukunishi, S. Minami, M. Okita, Effects of decaphenylcyclopentasilane addition on photovoltaic properties of perovskite solar cells. Coatings 8, 461 (2018). https://doi.org/10.3390/coatings8120461

    Article  CAS  Google Scholar 

  44. M. Taguchi, A. Suzuki, T. Oku, N. Ueoka, S. Minami, M. Okita, Effects of annealing temperature on decaphenylcyclopentasilane-inserted CH3NH3PbI3 perovskite solar cells. Chem. Phys. Lett. 737, 136822 (2019). https://doi.org/10.1016/j.cplett.2019.136822

    Article  CAS  Google Scholar 

  45. T. Oku, S. Kandori, M. Taguchi, A. Suzuki, M. Okita, S. Minami, S. Fukunishi, T. Tachikawa, Polysilane-inserted methylammonium lead iodide perovskite solar cells doped with formamidinium and potassium. Energies 13, 4776 (2020). https://doi.org/10.3390/en13184776

    Article  CAS  Google Scholar 

  46. A. Suzuki, M. Kato, N. Ueoka, T. Oku, Additive effect of formamidinium chloride in methylammonium lead halide compound-based perovskite solar cells. J. Electron. Mater. 48, 3900–3907 (2019). https://doi.org/10.1007/s11664-019-07153-2

    Article  CAS  Google Scholar 

  47. T. Oku, Y. Ohishi, N. Ueoka, Highly (100)-oriented CH3NH3PbI3(Cl) perovskite solar cells prepared with NH4Cl using an air blow method. RSC Adv. 8, 10389–10395 (2018). https://doi.org/10.1039/c7ra13582c

    Article  CAS  Google Scholar 

  48. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Gött. 26, 98 (1918)

    Google Scholar 

  49. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  50. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charac. 85, 111 (2013). https://doi.org/10.1016/j.matchar.2013.09.002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Suzuki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, A., Taguchi, M., Oku, T. et al. Additive effects of methyl ammonium bromide or formamidinium bromide in methylammonium lead iodide perovskite solar cells using decaphenylcyclopentasilane. J Mater Sci: Mater Electron 32, 26449–26464 (2021). https://doi.org/10.1007/s10854-021-07023-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07023-w

Navigation