Skip to main content
Log in

Fabrication of Stainless Steel Metal Mask with Electrochemical Fabrication Method and Its Improvement in Dimensional Uniformity

  • Original Article - Chemistry and Biomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

This study presents an efficient method for fabricating a stainless-steel metal mask with through hole arrays. The electrochemical interactions between the electrolyte and metal surface were analyzed by linear scan voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Dry film resist patterning was utilized to apply a protective layer to the substrate for selective electrochemical etching. Through hole arrays were fabricated by electrochemical fabrication, which entails immersing two electrodes in an electrolyte and applying current. To improve the dimensional uniformity of the resulting through hole arrays, ammonium dodecyl sulfate (ADS) was added to the electrolyte and an insulation shield was placed in front of the substrate. Confocal 3D microscopy and optical microscopy were used to evaluate the dimensional uniformity and the depth and radius of hole patterns, respectively. LSV and EIS results showed that the stainless-steel surface was passivated at a low potential and that the passivation layer was broken down at high potential. Adding ADS and the insulation shield improved the dimensional uniformity of the resulting through hole arrays.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bai, J.G., Zhang, Z.Z., Calata, J.N., Lu, G.Q.: Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material. IEEE Trans. Compon. Packag. Technol. 29(3), 589–593 (2006). https://doi.org/10.1109/tcapt.2005.853167

    Article  Google Scholar 

  2. Sun, S.-S., Zhang, C., Ledbetter, A., Choi, S., Seo, K., Bonner, C.E., Drees, M., Sariciftci, N.S.: Photovoltaic enhancement of organic solar cells by a bridged donor-acceptor block copolymer approach. Appl. Phys. Lett. 90(4), 043117 (2007). https://doi.org/10.1063/1.2437100

    Article  Google Scholar 

  3. Bhat, S.N., Rao, G.A., Dinesh, N.S., Baliga, B.N.: Photo-defined electrically assisted etching method for metal stencil fabrication. IEEE Trans. Compon. Packag. Manuf. Technol. 1(7), 1116–1121 (2011). https://doi.org/10.1109/tcpmt.2011.2116796

    Article  Google Scholar 

  4. Yi, S.M., Jin, S.H., Lee, J.D., Chu, C.N.: Fabrication of a high-aspect-ratio stainless steel shadow mask and its application to pentacene thin-film transistors. J. Micromech. Microeng. 15(2), 263–269 (2005). https://doi.org/10.1088/0960-1317/15/2/003

    Article  Google Scholar 

  5. Cotter, J., Yao, G., Eggleston, B.: Laser-formed stencils for printed silicon solar cells. In: Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-First IEEE, 2005, pp. 1169–1172. IEEE

  6. Li, L., Thompson, P.: Stencil printing process development for flip chip interconnect. IEEE Trans. Electron. Packag. Manuf. 23(3), 165–170 (2000)

    Article  Google Scholar 

  7. Cho, M.-S., Cho, S.-H., Cha, N.-G., Hyun-Woo, L., Park, J.-G., Jo, J.-S.: Characterization of sus molds for light guide plates by electro-chemical fabrication (ECF) method. Electron. Mater. Lett. 3(2), 93–96 (2007)

    Google Scholar 

  8. Cho, M.-S., Lim, H.-W., Lee, C.S., Cho, B.-K., Park, J.-G.: Fabrication of stainless steel mold using electrochemical fabrication method for microfluidic biochip. Jpn. J. Appl. Phys. 47(6S), 5217 (2008)

    Article  Google Scholar 

  9. Rosset, E., Datta, M., Landolt, D.: Electrochemical dissolution of stainless steels in flow channel cells with and without photoresist masks. J. Appl. Electrochem. 20(1), 69–76 (1990)

    Article  Google Scholar 

  10. Datta, M.: Fabrication of an array of precision nozzles by through-mask electrochemical micromachining. J. Electrochem. Soc. 142(11), 3801–3805 (1995)

    Article  Google Scholar 

  11. McCrabb, H., Taylor, E.J., Lozano-Morales, A., Shimpalee, S., Inman, M., Van Zee, J.W.: Through-mask electroetching for fabrication of metal bipolar plate gas flow field channels. ECS Trans. 33(1), 991–1006 (2010)

    Article  Google Scholar 

  12. Chen, X., Qu, N., Li, H.: Improvement of dimensional uniformity on micro-dimple arrays generated by electrochemical micro-machining with an auxiliary electrode. Int. J. Adv. Manuf. Technol. 80(9–12), 1577–1585 (2015)

    Article  Google Scholar 

  13. Jiang, L.-T., Huang, T.-C., Chiu, C.-R., Chang, C.-Y., Yang, S.-Y.: Fabrication of plastic microlens arrays using hybrid extrusion rolling embossing with a metallic cylinder mold fabricated using dry film resist. Opt. Express 15(19), 12088–12094 (2007)

    Article  Google Scholar 

  14. Lee, E.S.: Machining characteristics of the electropolishing of stainless steel (STS316L). Int. J. Adv. Manuf. Technol. 16(8), 591–599 (2000). https://doi.org/10.1007/s001700070049

    Article  Google Scholar 

  15. Park, J.W., Lee, D.W.: Pulse electrochemical polishing for microrecesses based on a coulostatic analysis. Int. J. Adv. Manuf. Technol. 40(7–8), 742–748 (2009). https://doi.org/10.1007/s00170-008-1391-y

    Article  Google Scholar 

  16. Boukamp, B.A.: A linear Kronig–Kramers transform test for immittance data validation. J. Electrochem. Soc. 142(6), 1885–1894 (1995). https://doi.org/10.1149/1.2044210

    Article  Google Scholar 

  17. Sapra, S., Li, H.Q., Wang, Z.C., Suni, I.I.: Voltammetry and impedance studies of Ta in aqueous HF. J. Electrochem. Soc. 152(6), B193–B197 (2005). https://doi.org/10.1149/1.1899286

    Article  Google Scholar 

  18. Mandula, T.R., Srinivasan, R.: Electrochemical impedance spectroscopic studies on niobium anodic dissolution in HF. J. Solid State Electrochem. 21(11), 3155–3167 (2017). https://doi.org/10.1007/s10008-017-3634-z

    Article  Google Scholar 

  19. Franceschetti, D.R., Macdonald, J.R.: Electrode-kinetics, equivalent-circuits, and system characterization—small-signal conditions. J. Electroanal. Chem. 82(1–2), 271–301 (1977). https://doi.org/10.1016/s0022-0728(77)80262-3

    Article  Google Scholar 

  20. Connors, K.A.: Chemical Kinetics: The Study of Reaction Rates in Solution. Wiley, New York (1990)

    Google Scholar 

  21. Yan, J.: Handbook of Clean Energy Systems. Wiley, New York (2015)

    Book  Google Scholar 

  22. Laio, Y., Wu, L., Peng, W.: A study to improve drilling quality of electrochemical discharge machining (ECDM) process. Procedia CIRP 6, 609–614 (2013)

    Article  Google Scholar 

  23. Zhang, J., Manglik, R.M.: Additive adsorption and interfacial characteristics of nucleate pool boiling in aqueous surfactant solutions. J. Heat Transf. Trans. ASME 127(7), 684–691 (2005)

    Article  Google Scholar 

  24. Kang, K.H., Kim, H.U., Lim, K.H.: Effect of temperature on critical micelle concentration and thermodynamic potentials of micellization of anionic ammonium dodecyl sulfate and cationic octadecyl trimethyl ammonium chloride. Colloid Surf. A Physicochem. Eng. Asp. 189(1–3), 113–121 (2001). https://doi.org/10.1016/s0927-7757(01)00577-5

    Article  Google Scholar 

  25. Rahman, A., Brown, C.: Effect of pH on the critical micelle concentration of sodium dodecyl sulphate. J. Appl. Polym. Sci. 28(4), 1331–1334 (1983)

    Article  Google Scholar 

  26. Datta, M., Osaka, T., Schultze, J.W.: Microelectronic Packaging. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant (HYU-2016-G) from the Post-Doc Recruitment Program funded by Hanyang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Goo Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, HY., Kim, MJ., Yerriboina, N. et al. Fabrication of Stainless Steel Metal Mask with Electrochemical Fabrication Method and Its Improvement in Dimensional Uniformity. Electron. Mater. Lett. 15, 7–17 (2019). https://doi.org/10.1007/s13391-018-0096-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0096-0

Keywords

Navigation