Skip to main content
Log in

Electrochemical impedance spectroscopic studies on niobium anodic dissolution in HF

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The dissolution of niobium electrode in anodic regime in hydrofluoric acid was studied using electrochemical techniques. In the active region, complex plane plots of the impedance spectra exhibited mainly two capacitive loops. In the passive region, the spectra exhibited a mid-frequency pseudo-inductive loop and a low-frequency negative resistance. X-ray photoelectron spectroscopic analysis showed that the surface contains Nb2+ and Nb5+. The impedance data were analysed using equivalent circuit with Maxwell elements as well as mechanistic modelling. A four-step mechanism with a chemical and electrochemical dissolution step is proposed to explain the results. The results show that Nb with an oxidation state of 2 is likely to be an intermediates species. The simulations predict that at low over potentials, the surface is covered mainly with bare metal, whereas at high over potentials, the surface is entirely covered by passivating Nb5+ film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hassel AW, Diesing D (2002) Breakdown of ultrathin anodic valve metal oxide films in metal-insulator-metal-contacts compared with metal-insulator-electrolyte contacts. Thin Solid Films 414:296–303

    Article  CAS  Google Scholar 

  2. D'Alkaine C, De Souza L, Nart F (1993) The anodic behaviour of niobium—III. Kinetics of anodic film growth by potentiodynamic and galvanostatic techniques—general models, equations and their applications. Corros Sci 34:129–149

    Article  Google Scholar 

  3. Bojinov M, Cattarin S, Musiani M, Tribollet B (2003) Evidence of coupling between film growth and metal dissolution in passivation processes. Electrochim Acta 48:4107–4117

    Article  CAS  Google Scholar 

  4. Cattarin S, Musiani M, Tribollet B (2002) Nb Electrodissolution in Acid Fluoride Medium. J Electrochem Soc 149:B457

    Article  CAS  Google Scholar 

  5. Baruffaldi C, Bertoncello R, Cattarin S, Guerriero P, Musiani M (2003) Nb electrodissolution in aqueous alkali: dependence on the alkali metal. J Electroanal Chem 545:65–72

    Article  CAS  Google Scholar 

  6. Choi J, Lim JH, Lee SC, Chang JH, Kim KJ, Cho MA (2006) Porous niobium oxide films prepared by anodization in HF/H3PO4. Electrochim Acta 51:5502–5507

    Article  CAS  Google Scholar 

  7. Tzvetkov B, Bojinov M, Girginov A (2009) Nanoporous oxide formation by anodic oxidation of Nb in sulphate–fluoride electrolytes. J Solid State Electrochem 13:1215–1226

    Article  CAS  Google Scholar 

  8. Di Quarto F, La Mantia F, Santamaria M (2005) Physicochemical characterization of passive films on niobium by admittance and electrochemical impedance spectroscopy studies. Electrochim Acta 50:5090–5102

    Article  CAS  Google Scholar 

  9. Nagahara K, Sakairi M, Takahashi H, Matsumoto K, Takayama K, Oda Y (2007) Mechanism of formation and growth of sunflower-shaped imperfections in anodic oxide films on niobium. Electrochim Acta 52:2134–2145

    Article  CAS  Google Scholar 

  10. Sowa M, Greń K, Kukharenko AI, Korotin DM, Michalska J, Szyk-Warszyńska L, Mosiałek M, Żak J, Pamuła E, Kurmaev EZ (2014) Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium. Mater Sci Eng, C 42:529–537

    Article  CAS  Google Scholar 

  11. Chandra A, Sumption M, Frankel G (2012) On the mechanism of niobium electropolishing. J Electrochem Soc 159:C485–C491

    Article  CAS  Google Scholar 

  12. Ciovati G, Tian H, Corcoran SG (2011) Buffered electrochemical polishing of niobium. J Appl Electrochem 41:721–730

    Article  CAS  Google Scholar 

  13. Neelakantan L, Pareek A, Hassel AW (2011) Electro-dissolution of 30Nb–Ti alloys in methanolic sulfuric acid—Optimal conditions for electropolishing. Electrochim Acta 56:6678–6682

    Article  CAS  Google Scholar 

  14. Tian H, Corcoran SG, Reece CE, Kelley MJ (2008) The mechanism of electropolishing of niobium in hydrofluoric–sulfuric acid electrolyte. J Electrochem Soc 155:D563–D568

    Article  CAS  Google Scholar 

  15. Inman M, Taylor E, Hall T (2013) Electropolishing of passive materials in HF-free low viscosity aqueous electrolytes. J Electrochem Soc 160:E94–E98

    Article  CAS  Google Scholar 

  16. Schober T, Sorajić V (1973) A new method for electropolishing niobium for transmission electron microscopy (TEM). Metallography 6:183–184

    Article  CAS  Google Scholar 

  17. Sieber I, Hildebrand H, Friedrich A, Schmuki P (2005) Formation of self-organized niobium porous oxide on niobium. Electrochem Commun 7:97–100

    Article  CAS  Google Scholar 

  18. Bleckenwegner P, Mardare CC, Cobet C, Kollender JP, Hassel AW, Mardare AI (2017) Compositionally dependent non-linear optical bandgap behavior of mixed anodic oxides in niobium-titanium system. ACS Comb Sci 19:121–129

    Article  CAS  Google Scholar 

  19. Mardare AI, Ludwig A, Savan A, Hassel AW (2013) Scanning droplet cell microscopy on a wide range hafnium–niobium thin film combinatorial library. Electrochim Acta 110:539–549

    Article  CAS  Google Scholar 

  20. Mardare AI, Ludwig A, Savan A, Hassel AW (2014) Electrochemistry on binary valve metal combinatorial libraries: niobium-tantalum thin films. Electrochim Acta 140:366–375

    Article  CAS  Google Scholar 

  21. Woldemedhin MT, Raabe D, Hassel AW (2012) Characterization of thin anodic oxides of Ti–Nb alloys by electrochemical impedance spectroscopy. Electrochim Acta 82:324–332

    Article  CAS  Google Scholar 

  22. Baruffaldi C, Casellato U, Cattarin S, Musiani M, Tribollet B, Vercelli B (2002) Characterisation of the surface films formed on Nb during electrodissolution in aqueous alkali. Electrochim Acta 47:2989–2997

    Article  CAS  Google Scholar 

  23. Barsukov E, Macdonald J (2005) Impedance Spectroscopy. Wiley, New Jersey

    Book  Google Scholar 

  24. Macdonald DD (2006) Reflections on the history of electrochemical impedance spectroscopy. Electrochim Acta 51:1376–1388

    Article  CAS  Google Scholar 

  25. Boukamp BA (1995) A Linear Kronig-Kramers Transform Test for Immittance Data Validation. J Electrochem Soc 142:1885–1894

    Article  CAS  Google Scholar 

  26. Franceschetti DR, Macdonald JR (1977) Electrode kinetics, equivalent circuits, and system characterization: Small-signal conditions. J Electroanal Chem Interfacial Electrochem 82:271–301

    Article  Google Scholar 

  27. Fasmin F, Praveen B, Ramanathan S (2015) A kinetic model for the anodic dissolution of Ti in HF in the active and passive regions. J Electrochem Soc 162:H604–H610

    Article  CAS  Google Scholar 

  28. Amrutha M, Srinivasan R (2017) Kinetics of anodic dissolution of Zr in acidic fluoride media. J Solid State Electrochem 21:91–102

    Article  CAS  Google Scholar 

  29. Aspart A, Antoine C (2004) Study of the chemical behavior of hydrofluoric, nitric and sulfuric acids mixtures applied to niobium polishing. Appl Surf Sci 227:17–29

    Article  CAS  Google Scholar 

  30. Sapra S, Li H, Wang Z, Suni II (2005) Voltammetry and Impedance Studies of Ta in Aqueous HF. J Electrochem Soc 152:B193

    Article  CAS  Google Scholar 

  31. Keddam M, Mattos O, Takenouti H (1986) Mechanism of anodic dissolution of iron-chromium alloys investigated by electrode impedances—I. Experimental results and reaction model. Electrochim Acta 31:1147–1158

    Article  CAS  Google Scholar 

  32. Macdonald DD, Real S, Smedley SI, Urquidi-Macdonald M (1988) Evaluation of Alloy Anodes for Aluminum-Air Batteries: IV . Electrochemical Impedance Analysis of Pure Aluminum in at 25°C. J Electrochem Soc 135:2410–2414

    Article  CAS  Google Scholar 

  33. Agarwal P, Orazem ME, Garcia-Rubio LH (1992) Measurement models for electrochemical impedance spectroscopy I. Demonstration of applicability. J Electrochem Soc 139:1917–1927

    Article  CAS  Google Scholar 

  34. Diard J-P, Le Gorrec B, Montella C (1997) Deviation from the polarization resistance due to non-linearity I-theoretical formulation. J Electroanal Chem 432:27–39

    Article  CAS  Google Scholar 

  35. He Z, Mansfeld F (2009) Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ Sci 2:215–219

    Article  CAS  Google Scholar 

  36. Darowicki K (1995) Theoretical description of fundamental-harmonic impedance of a two-step electrode reaction. Electrochim Acta 40:767–774

    Article  CAS  Google Scholar 

  37. Kong D-S (2010) Anion-Incorporation Model Proposed for Interpreting the Interfacial Physical Origin of the Faradaic Pseudocapacitance Observed on Anodized Valve Metals—with Anodized Titanium in Fluoride-Containing Perchloric Acid as an Example. Langmuir 26:4880–4891

    Article  CAS  Google Scholar 

  38. Latta EE, Ronay M (1986) Catalytic oxidation of niobium by rare earths. J Vac Sci Technol, A 4:1626–1630

    Article  CAS  Google Scholar 

  39. Sasaki T, Baba Y (1985) Chemical-state studies of Zr and Nb surfaces exposed to hydrogen ions. Phys Rev B 31:791

    Article  CAS  Google Scholar 

  40. Bahl M (1975) ESCA studies of some niobium compounds. J Phys Chem Solids 36:485–491

    Article  CAS  Google Scholar 

  41. Ho S-F, Contarini S, Rabalais J (1987) Ion-beam-induced chemical changes in the oxyanions (MOy n−) and oxides (MOx) where M = chromium, molybdenum, tungsten, vanadium, niobium and tantalum. J Phys Chem 91:4779–4788

    Article  CAS  Google Scholar 

  42. Fontaine R, Caillat R, Feve L, Guittet M (1977) Déplacement chimique ESCA dans la série des oxydes du niobium. J Electron Spectrosc Relat Phenom 10:349–357

    Article  CAS  Google Scholar 

  43. Gomes MA, Bulhões LOS, De Castro SC, Damião AJ (1990) The Electrochromic Process at Nb2O5 Electrodes Prepared by Thermal Oxidation of Niobium. J Electrochem Soc 137:3067–3070

    Article  CAS  Google Scholar 

  44. Mazur M, Szymańska M, Kaczmarek D, Kalisz M, Wojcieszak D, Domaradzki J, Placido F (2014) Determination of optical and mechanical properties of Nb2O5 thin films for solar cells application. Appl Surf Sci 301:63–69

    Article  CAS  Google Scholar 

  45. Groult H, Neveu S, Leclerc S, Porras-Gutierrez A-G, Julien C, Tressaud A, Durand E, Penin N, Labrugere C (2017) Nano-CoF3 prepared by direct fluorination with F2 gas: Application as electrode material in Li-ion battery. J Fluorine Chem 196:117–127

    Article  CAS  Google Scholar 

  46. Skryleva E, Kubasov I, Kiryukhantsev-Korneev PV, Senatulin B, Zhukov R, Zakutailov K, Malinkovich M, Parkhomenko YN (2016) XPS study of Li/Nb ratio in LiNbO3 crystals. Effect of polarity and mechanical processing on LiNbO3 surface chemical composition. Appl Surf Sci 389:387–394

    Article  CAS  Google Scholar 

  47. Wu Q-H, Thißen A, Jaegermann W (2004) Photoelectron spectroscopic study of Na intercalation into V2O5 thin films. Solid State Ionics 167:155–163

    Article  CAS  Google Scholar 

  48. Li Y, Xu J (2017) Is niobium more corrosion-resistant than commercially pure titanium in fluoride-containing artificial saliva? Electrochim Acta 233:151–166

    Article  CAS  Google Scholar 

  49. Luo Y, Wang P, Ma L-P, Cheng H-M (2008) Hydrogen sorption kinetics of MgH2 catalyzed with NbF5. J Alloys Compd 453:138–142

    Article  CAS  Google Scholar 

  50. Fletcher S (1994) Tables of Degenerate Electrical Networks for Use in the Equivalent-Circuit Analysis of Electrochemical Systems. J Electrochem Soc 141:1823–1826

    Article  CAS  Google Scholar 

  51. Pajkossy T (1997) Capacitance dispersion on solid electrodes: anion adsorption studies on gold single crystal electrodes. Solid State Ionics 94:123–129

    Article  CAS  Google Scholar 

  52. Alexander CL, Tribollet B, Orazem ME (2016) Contribution of Surface Distributions to Constant-Phase-Element (CPE) Behavior: 2. Capacitance. Electrochim Acta 188:566–573

    Article  CAS  Google Scholar 

  53. Alexander CL, Tribollet B, Orazem ME (2015) Contribution of surface distributions to Constant-Phase-Element (CPE) behavior: 1. Influence of roughness. Electrochim Acta 173:416–424

    Article  CAS  Google Scholar 

  54. Osório WR, Cheung N, Spinelli JE, Goulart PR, Garcia A (2007) The effects of a eutectic modifier on microstructure and surface corrosion behavior of Al-Si hypoeutectic alloys. J Solid State Electrochem 11:1421–1427

    Article  Google Scholar 

  55. Pierozynski B (2013) Electrochemical reactivity of urea at Pt (100) surface in 0.5 M H2SO4 by AC impedance spectroscopy. J Solid State Electrochem 17:889–893

    Article  CAS  Google Scholar 

  56. El-Sayed A-R, Ibrahim EM, Mohran HS, Ismael M, Shilkamy HA-S (2015) Effect of indium alloying with lead on the mechanical properties and corrosion resistance of lead-indium alloys in sulfuric acid solution. Metall Mater Trans A 46:1995–2006

    Article  CAS  Google Scholar 

  57. Fletcher S (2009) Tafel slopes from first principles. J Solid State Electrochem 13:537–549

    Article  CAS  Google Scholar 

  58. Harrington DA (1996) Electrochemical impedance of multistep mechanisms: mechanisms with diffusing species. J Electroanal Chem 403:11–24

    Article  Google Scholar 

  59. d'Alkaine C, De Souza L, Nart F (1993) The anodic behaviour of niobium—I. The state of the art. Corros Sci 34:109–115

    Article  Google Scholar 

  60. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Houston

    Google Scholar 

  61. Kollender JP, Mardare AI, Hassel AW (2017) Direct observation of metal dissolution during anodization of niobium. Electrochem Commun 74:5–8

    Article  CAS  Google Scholar 

  62. Gregori J, Gimenez-Romero D, Garcia-Jareño JJ, Vicente F (2006) Calculation of the rate constants of nickel electrodissolution in acid medium from EIS. J Solid State Electrochem 10:920–928

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Science and Technology, India, for providing financial support for SEM facility in the Department of Chemical Engineering, Indian Institute of Technology Madras, and Professor M. S. R. Rao, Department of Physics, Indian Institute of Technology Madras for XPS facility. We also thank Prof. B. Boukamp, U Twente, for the linear KKT software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramanathan Srinivasan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandula, T., Srinivasan, R. Electrochemical impedance spectroscopic studies on niobium anodic dissolution in HF. J Solid State Electrochem 21, 3155–3167 (2017). https://doi.org/10.1007/s10008-017-3634-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3634-z

Keywords

Navigation