Skip to main content
Log in

3D inverse-opal structured Li4Ti5O12 Anode for fast Li-Ion storage capabilities

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Since the demand for high power Li-ion batteries (LIBs) is increasing, spinel-structured lithium titanate, Li4Ti5O12 (LTO), as the anode material has attracted great attention because of its excellent cycle retention, good thermal stability, high rate capability, and so on. However, LTO shows relatively low conductivity due to empty 3d orbital of Ti4+ state. Nanoscale architectures can shorten electron conduction path, thus such low electronic conductivity can be overcome while Li+ can be easily accessed due to large surface area. Herein, three dimensional bicontinuous LTO electrodes were prepared via close-packed self-assembly with polystyrene (PS) spheres followed by removal of them, which leads to no blockage of Li+ ion transportation pathways as well as fast electron conduction. 3D bicontinuous LTO electrodes showed high-rate lithium storage capability (103 mAh/g at 20 C), which is promising as the power sources that require rapid electrochemical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Tarascon and M. Armand, Nature 414, 359 (2000).

    Article  Google Scholar 

  2. L. W. Ji, Z. Lin, M. Alcoutlabi, and X. W. Zhang, Energ. Environ. Sci. 4, 2682 (2011).

    Article  Google Scholar 

  3. T.-H. Kim, J.-S. Park, S. K. Chang, S. Choi, J. H. Ryu, and H.-K. Song, Adv. Energy Mater. 2, 860 (2012).

    Article  Google Scholar 

  4. H. Woo, J. Kang, J. Kim, C. Kim, S. Nam, and B. Park, Electron. Mater. Lett. 12, 551 (2016).

    Article  Google Scholar 

  5. J.-K. Yoo, J. Jeon, K. Kang, and Y. S. Jung, Electron. Mater. Lett. 13, 136 (2017).

    Article  Google Scholar 

  6. S.-W. Kim, V. G. Kumar, D.-H. Seo, Y.-U. Park, J. Kim, H. Kim, J. Kim, J. Hong, and K. Kang, Electron. Mater. Lett. 12, 551 (2016).

    Article  Google Scholar 

  7. A. Hayashi and M. Tatsumisago, Electron. Mater. Lett. 8, 199 (2012).

    Article  Google Scholar 

  8. J.-G. Lee, C. Kim, B. Kim, D. Son, and B. Park, Electron. Mater. Lett. 2, 111 (2006).

    Google Scholar 

  9. C. R. Jarvis, M. J. Lain, M. V. Yakovleva, and Y. Gao, J. Power Sources 162, 800 (2012).

    Article  Google Scholar 

  10. L. M. Yao, X. H. Hou, S. J. Hu, X. Q. Tang, X. Liu, and Q. Ru, J. Alloy Compd. 585, 398 (2014).

    Article  Google Scholar 

  11. J. W. Fergus, J. Power Sources 195, 939 (2010).

    Article  Google Scholar 

  12. D. Deng, Energy Science & Engineering 3, 385 (2015).

    Article  Google Scholar 

  13. N. Nitta, F. Wu, J. T. Lee, and G. Yushin, Mater. Today 18, 252 (2015).

    Article  Google Scholar 

  14. B. Kang and G. Ceder, Nature 458, 190 (2009).

    Article  Google Scholar 

  15. K. Zaghib, M. Simoneau, M. Armand, and M. Gauthier, J. Power Sources 81, 300 (1999).

    Article  Google Scholar 

  16. C. H. Chen, J. T. Vaughey, A. N. Jansen, D. W. Dees, A. J. Kahaian, T. Goacher, and M. M. Thackeray, J. Electrochem. Soc. 148, A102 (2001).

    Article  Google Scholar 

  17. H. Ming, J. Ming, X. Li, Q. Zhou, H. Wang, L. Jin, Y. Fu, J. Adkins, and J. Zheng, Electrochim. Acta. 116, 224 (2014).

    Article  Google Scholar 

  18. Y. Wang, H. Liu, K. Wang, H. Eiji, Y. Wang, and H. Zhou, J. Mater. Chem. 19, 6789 (2009).

    Article  Google Scholar 

  19. M. Guo, S. Wang, L.-X. Ding, C. Huang, and H. Wang, J. Power Sources 283, 372 (2015).

    Article  Google Scholar 

  20. Q. Zhang, M. G. Verde, J. K. Seo, X. Li, and Y. S. Meng, J. Power Sources 280, 355 (2015).

    Article  Google Scholar 

  21. Y. Tang, L. Liu, H. Zhao, D. Jia, and W. Liu, J. Mater. Chem. A 4, 2089 (2016).

    Article  Google Scholar 

  22. J. Liu, K. P. Song, P. A. Van Aken, J. Maier, and Y. Yu, Nano Lett. 14, 2597 (2014).

    Article  Google Scholar 

  23. J. Kim, K. E. Lee, K. H. Kim, S. Wi, S. Lee, S. Nam, C. Kim, S. O. Kim, and B. Park, Carbon 114, 275 (2017).

    Article  Google Scholar 

  24. S. Chen, Y. Xin, Y. Zhou, Y. Ma, H. Zhou, and L. Qi, Energ. Environ. Sci. 7, 1924 (2014).

    Article  Google Scholar 

  25. Y. Oh, S. Nam, S. Wi, S. Hong, and B. Park, Electron. Mater. Lett. 8, 91 (2012).

    Article  Google Scholar 

  26. J. Cho, Y. J. Kim, T.-J. Kim, and B. Park, J. Electrochem. Soc. 149, A127 (2002).

    Article  Google Scholar 

  27. S. Wi, J. Park, S. Lee, J. Kang, T. Hwang, K.-S. Lee, H.-K. Lee, S. Nam, C. Kim, Y.-E. Sung, and B. Park, Nano Energy 31, 495 (2017).

    Article  Google Scholar 

  28. D. A. Cogswell and M. Z. Bazant, ACS Nano 6, 2215 (2012).

    Article  Google Scholar 

  29. S. Nam, S. Kim, S. Wi, H. Choi, S. Byun, S.-M. Choi, S.-I. Yoo, K. T. Lee, and B. Park, J. Power Sources 211, 154 (2012).

    Article  Google Scholar 

  30. K. Huo, X. Li, B. Gao, L. Wang, Q. Li, X. Peng, X. Zhang, J. Fu, and P. K. Chu, ChemElectroChem 3, 1301 (2016).

    Article  Google Scholar 

  31. Y. Oh, D. Ahn, S. Nam, C. Kim, J.-G. Lee, and B. Park, Electron. Mater. Lett. 4, 103 (2008).

    Google Scholar 

  32. B. Kim, C. Kim, T.-G. Kim, D. Ahn, and B. Park, J. Electrochem. Soc. 153, A1773 (2006).

    Article  Google Scholar 

  33. O.-H. Kim, Y.-H. Cho, S. H. Kang, H.-Y. Park, M. Kim, J. W. Lim, D. Y. Chung, M. J. Lee, H. Choe, and Y.-E. Sung, Nat. Commun. 4, 2473 (2013).

    Google Scholar 

  34. A. Esmanski and G. A. Ozin, Adv. Funct. Mater. 19, 1999 (2009).

    Article  Google Scholar 

  35. S. T. Ha, O. O. Park, and S. H. Im, Macromol. Res. 18, 935 (2010).

    Article  Google Scholar 

  36. L. F. Shen, C. Z. Yuan, H. J. Luo, X. G. Zhang, K. Xu, and Y. Y. Xia, J. Mater. Chem. 20, 6998 (2010).

    Article  Google Scholar 

  37. Y. Oh, S. Nam, S. Wi, J. Kang, T. Hwang, S. Lee, H. H. Park, J. Cabana, C. Kim, and B. Park, J. Mater. Chem. A. 2, 2023 (2014).

    Article  Google Scholar 

  38. C. Kim, N. S. Norberg, C. T. Alexander, R. Kostecki, and J. Cabana, Adv. Funct. Mater. 23, 1214 (2013).

    Article  Google Scholar 

  39. J. Gong, J. Liu, L. Ma, X. Wen, X. Chen, D. Wan, H. Yu, Z. Jiang, E. Borowiak-Palen, and T. Tang, Appl. Catal. B 185, 117 (2012).

    Google Scholar 

  40. J. L. Gurman, L. Baier, and B. C. Levin, Fire Mater. 11, 109 (1987).

    Article  Google Scholar 

  41. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).

    Article  Google Scholar 

  42. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon 45, 1558 (2007).

    Article  Google Scholar 

  43. Z. Wang, Y. Dong, H. Li, Z. Zhao, H. B. Wu, C. Hao, S. Liu, J. Qiu, and X. W. Lou, Nat. Commun. 5, 5002 (2014).

    Article  Google Scholar 

  44. T. Lin, C. Yang, Z. Wang, H. Yin, X. Lu, F. Huang, J. Lin, X. Xie, and M. Jiang, Energ. Environ. Sci. 7, 967 (2014).

    Article  Google Scholar 

  45. R. Dedryvère, D. Foix, S. Franger, S. Patoux, L. Daniel, and D. Gonbeau, J. Phys. Chem. C 114, 10999 (2010).

    Article  Google Scholar 

  46. T. Ohzuku, A. Ueda, and N. Yamamoto, J. Electrochem. Soc. 142, 1431 (1995).

    Article  Google Scholar 

  47. S. Scharner, W. Weppner and P. Schmid-Beurmann, J. Electrochem. Soc. 146, 857 (1999).

    Article  Google Scholar 

  48. A. Birrozzi, M. Copley, J. V. Zamory, M. Pasqualini, S. Calcaterra, F. Nobili, A. D. Cicco, H. Rajantie, M. Briceno, E. Bilbe, L. Cabo-Fernandez, L. J. Hardwick, D. Bresser, and S. Passerini, J. Electrochem. Soc. 162, A2331 (2015).

    Article  Google Scholar 

  49. X. Wang, D. Liu, Q. Weng, J. Liu, Q. Liang, and C. Zhang, NPG Asia Mater. 7, e171 (2015).

    Article  Google Scholar 

  50. L. Yuan, H. K. Liu, A. Maaroof, K. Konstantinov, J. Liu, and M. Cortie, J. New Mater. Electrochem. Syst. 10, 95 (2007).

    Google Scholar 

  51. Y.-H. Chen, C.-W. Wang, G. Liu, X.-Y. Song, V. S. Battaglia, and A. M. Sastry, J. Electrochem. Soc. 154, A978 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunjoong Kim or Dojin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Quang, N.D., Hien, T.T. et al. 3D inverse-opal structured Li4Ti5O12 Anode for fast Li-Ion storage capabilities. Electron. Mater. Lett. 13, 505–511 (2017). https://doi.org/10.1007/s13391-017-7101-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-7101-x

Keywords

Navigation