Skip to main content
Log in

Triboelectric charge generation by semiconducting SnO2 film grown by atomic layer deposition

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Improving the energy harvesting efficiency of triboelectric generators (TEGs) requires exploring new types of materials that can be used, and understanding their properties. In this study, we have investigated semiconducting SnO2 thin films as friction layers in TEGs, which has not been explored thus far. Thin films of SnO2 with various thicknesses were grown by atomic layer deposition on Si substrates. Either polymer or glass was used as counter friction layers. Vertical contact/separation mode was utilized to evaluate the TEG efficiency. The results indicate that an increase in the SnO2 film thickness from 5 to 25 nm enhances the triboelectric output voltage of the TEG. Insertion of a 400-nm-thick Pt sub-layer between the SnO2 film and Si substrate further increased the output voltage up to ~120 V in a 2 cm × 2 cm contact area, while the enhancement was cancelled out by inserting a 10-nm-thick insulating Al2O3 film between SnO2 and Pt films. These results indicate that n-type semiconducting SnO2 films can provide triboelectric charge to counter-friction layers in TEGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. A. Rahman, W. A. W. Jamil, and A. A. Umar, Electron. Mater. Lett. 12, 545 (2016).

    Article  Google Scholar 

  2. Z. L. Wang, J. Chen, and L. Lin, Energy Environ. Sci. 8, 2250 (2015).

    Article  Google Scholar 

  3. N. H. Lee, J. R. Shin, J. E. Yoo, D. H. You, B.-R. Koo, S. W. Lee, H.-J. Ahn, and B. J. Choi, J. Korean Powder Metall. Inst. 22, 321 (2015).

    Article  Google Scholar 

  4. W. Yang, J. Chen, G. Zhu, X. Wen, P. Bai, Y. Su, Y. Lin, and Z. Wang, Nano Res. 6, 880 (2013).

    Article  Google Scholar 

  5. S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, and Z. L. Wang, Nano Lett. 13, 2226 (2013).

    Article  Google Scholar 

  6. Z. L. Wang, G. Zhu, Y. Yang, S. Wang, and C. Pan, Mater. Today 15, 532 (2012).

    Article  Google Scholar 

  7. Y. H. Ko, G. Nagaraju, S. H. Lee, and J. S. Yu, ACS Appl. Mater. Interfaces 6, 6631 (2014).

    Article  Google Scholar 

  8. Y. Yang, H. Zhang, Z. H. Lin, Y. S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu, and Z. L. Wang, ACS Nano 7, 9213 (2013).

    Article  Google Scholar 

  9. F.-R. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, and Z. L. Wang, Nano Lett. 12, 3109 (2012).

    Article  Google Scholar 

  10. A. F. Diaz and R. M. Felix-Navarro, J. Electrostat. 62, 277 (2004).

    Article  Google Scholar 

  11. X. S. Meng, Z. L. Wang, and G. Zhu, Adv. Mater. 28, 668 (2015).

    Article  Google Scholar 

  12. W.-S. Jung, M.-G. Kang, H. G. Moon, S.-H. Baek, S.-J. Yoon, Z.-L. Wang, S.-W. Kim, and C.-Y. Kang, Sci. Rep. 5, 9309 (2015).

    Article  Google Scholar 

  13. H. S. Lee and S. I. Woo, Electron. Mater. Lett. 12, 499 (2016).

    Article  Google Scholar 

  14. S. M. George, Chem. Rev. 110, 111 (2010).

    Article  Google Scholar 

  15. J. Heo, A. S. Hock, and R. G. Gordon, Chem. Mater. 22, 4964 (2010).

    Article  Google Scholar 

  16. F.-R. Fan, Z.-Q. Tian, and Z. Lin Wang, Nano Energy 1, 328 (2012).

  17. B.-R. Koo and H.-J. Ahn, Ceram. Int. 42, 509 (2016).

    Article  Google Scholar 

  18. N. Satoh, I. Cesar, M. Lamers, I. Romijn, K. Bakker, C. Olson, D. O. Saynova, Y. Komatsu, A. Weeber, F. Verbakel, and M. Wiggers, e-J. Surf. Sci. Nanotech. 10, 22 (2012).

    Article  Google Scholar 

  19. K. Hwang, J.-S. Yeo, S.-S. Kim, D.-Y. Kim, and S.-I. Na, Semicond. Sci. Technol. 30, 015014 (2015).

    Article  Google Scholar 

  20. R. A. Street and N. F. Mott, Phys. Rev. Lett. 35, 1293 (1975).

    Article  Google Scholar 

  21. M. Utriainen, K. Kovács, J. M. Campbell, L. Niinistö, and F. Réti, J. Elctrochemical Soc. 146, 189 (1999).

    Article  Google Scholar 

  22. W.-S. Choi, Trans. Electr. Electron. Mater. 10, 200 (2009).

    Article  Google Scholar 

  23. C.-W. Cho, J.-H. Lee, D.-H. Riu, and C.-Y. Kim, Jpn. J. Appl. Phys. 51, 045001 (2012).

    Article  Google Scholar 

  24. Y.-J. Choi, I.-S. Hwang, J.-G. Park, K. J. Choi, J.-H. Park, and J.-H. Lee, Nanotechnology 19, 095508 (2008).

    Article  Google Scholar 

  25. M. Kanamori, K. Suzuki, Y. Ohya, and Y. Takahashi, Jpn. J. Appl. Phys. 33, 6680 (1994).

    Article  Google Scholar 

  26. P. Grosse, F. J. Schmitte, G. Frank, and H. Köstlin, Thin Solid Films 90, 309 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Joon Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, N.H., Yoon, S.Y., Kim, D.H. et al. Triboelectric charge generation by semiconducting SnO2 film grown by atomic layer deposition. Electron. Mater. Lett. 13, 318–323 (2017). https://doi.org/10.1007/s13391-017-6289-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6289-0

Keywords

Navigation