Skip to main content
Log in

Nanometer-thick amorphous-SnO2 layer as an oxygen barrier coated on a transparent AZO electrode

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

It is necessary for transparent conducting electrodes used in dye-sensitized or perovskite solar cells to have high thermal stability which is required when TiO2 is coated on the electrode. AZO films with their low-cost and good TCO properties are unfortunately unstable above 300 °C in air because of adsorbed oxygen. In this paper, the thermal stability of AZO films is enhanced by depositing an oxygen barrier on AZO films to block the oxygen. As the barrier material, SnO2 is used due to its high heat stability, electrical conductivity, and transmittance. Moreover, when the SnO2 is grown as amorphous phase, the protective effect become greater than the crystalline phase. The thermal stability of the amorphous-SnO2/AZO films varies depending on the thickness of the amorphous SnO2 layer. Because of the outstanding oxygen blocking properties of amorphous SnO2, its optimal thickness is very thin and it results in only a slight decrease in transmittance. The sheet resistance of the amorphous-SnO2/AZO film is 5.4 Ω sq−1 after heat treatment at 500 °C for 30 min in air and the average transmittance in the visible region is 83.4%. The results show that the amorphous-SnO2/AZO films have thermal stability with excellent electrical and optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Hoel, T. O. Mason, J.-F. Gaillard, and K. R. Poeppelmeier, Chem. Mater. 22, 3569 (2010).

    Article  Google Scholar 

  2. J. Ravichandran, W. Siemons, H. Heijmerikx, M. Huijben, A. Majumdar, and R. Ramesh, Chem. Mater. 22, 3983 (2010).

    Article  Google Scholar 

  3. A. R. Nagaraja, K. H. Stone, M. F. Toney, H. Peng, S. Lany, and T. O. Mason, Chem. Mater. 26, 4598 (2014).

    Article  Google Scholar 

  4. A. Nadarajah, M. E. Carnes, M. G. Kast, D. W. Johnson, and S. W. Boettcher, Chem. Mater. 25, 4080 (2013).

    Article  Google Scholar 

  5. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Il Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).

    Article  Google Scholar 

  6. B. T. Diroll, T. R. Gordon, E. A. Gaulding, D. R. Klein, T. Paik, H. J. Yun, E. D. Goodwin, D. Damodhar, C. R. Kagan, and C. B. Murray, Chem. Mater. 26, 4579 (2014).

    Article  Google Scholar 

  7. B. Thestrup and J. Schou, Appl. Phys. A-Mater. 69, S807 (1999).

    Article  Google Scholar 

  8. Y. Kim, I. Lee, Y. Song, M. Lee, B. Kim, N. Cho, and D. Y. Lee, Electron. Mater. Lett. 10, 445 (2014).

    Article  Google Scholar 

  9. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Chem. Rev. 110, 6595 (2010).

    Article  Google Scholar 

  10. B. Yoo, K. Kim, D.-K. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim, and N.-G. Park, J. Mater. Chem. 20, 4392 (2010).

    Article  Google Scholar 

  11. H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, Superlattice. Microst. 48, 458 (2010).

    Article  Google Scholar 

  12. T. Minami, H. Nanto, S. Shooji, and S. Takata, Thin Solid Films 111, 167 (1984).

    Article  Google Scholar 

  13. G. H. Kim, D. H. Hwang, and S. I. Woo, Mater. Chem. Phys. 131, 77 (2011).

    Article  Google Scholar 

  14. J. H. He, C. S. Lao, L. J. Chen, D. Davidovic, and Z. L. Wang, J. Am. Chem. Soc. 127, 16376 (2005).

    Article  Google Scholar 

  15. H. Damm, P. Adriaensens, C. De Dobbelaere, B. Capon, K. Elen, J. Drijkoningen, B. Conings, J. V. Manca, J. D’Haen, C. Detavernier, P. C. M. M. Magusin, J. Hadermann, A. Hardy, and M. K. Van Bael, Chem. Mater. 26, 5839 (2014).

    Article  Google Scholar 

  16. J. Schoenes, K. Kanazawa, and E. Kay, J. Appl. Phys. 48, 2537 (1977).

    Article  Google Scholar 

  17. H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, Appl. Surf. Sci. 257, 4906 (2011).

    Article  Google Scholar 

  18. T. Gui, L. Hao, J. Wang, L. Yuan, W. Jia, and X. Dong, Chin. Opt. Lett. 8, 134 (2010).

    Google Scholar 

  19. T. Minami, T. Miyata, and T. Yamamoto, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 17, 1822 (1999).

    Article  Google Scholar 

  20. H. Geistlinger, J. Appl. Phys. 80, 1370 (1996).

    Article  Google Scholar 

  21. H. Hosono, M. Yasukawa, and H. Kawazoe, J. Non. Cryst. Solids 203, 334 (1996).

    Article  Google Scholar 

  22. T. Szörényi, L. D. Laude, I. Bertóti, Z. Kántor, and Z. Geretovszky, J. Appl. Phys. 78, 6211 (1995).

    Article  Google Scholar 

  23. I. H. Kim, J. H. Ko, D. Kim, K. S. Lee, T. S. Lee, J.-H. Jeong, B. Cheong, Y.-J. Baik, and W. M. Kim, Thin Solid Films 515, 2475 (2006).

    Article  Google Scholar 

  24. J. Jeon, T. Gong, Y. Kong, H. M. Lee, and D. Kim, Electron. Mater. Lett. 11, 481 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Ihl Woo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.S., Woo, S.I. Nanometer-thick amorphous-SnO2 layer as an oxygen barrier coated on a transparent AZO electrode. Electron. Mater. Lett. 12, 499–505 (2016). https://doi.org/10.1007/s13391-016-4013-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-4013-0

Keywords

Navigation