Skip to main content
Log in

Multifunctional WSe2/SnSe2/WSe2 van der Waals heterostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we report the fabrication of WSe2/SnSe2/WSe2 van der Waals (vdW) heterostructures for potential applications as tunnel field-effect transistors (TFETs), bipolar junction transistors (BJTs), diodes, and phototransistors. We performed morphological, electrical, and optoelectronic characterizations of both back-gated WSe2/SnSe2 TFETs and WSe2/SnSe2/WSe2 BJTs. The electrical characterization of the WSe2/SnSe2 vdW-based TFETs exhibited a trend of negative differential resistance originating from band-to-band tunneling. The WSe2/SnSe2 vdW-based photodiode showed maximum photoresponsivity in the TFET of approximately 65 AW-1 at a laser power and wavelength of 0.015 µW and 532 nm, respectively. The results support the application of WSe2, SnSe2, and their heterostructures in multifunctional two-dimensional nanoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. S. Aftab, H.M. Ul Haq, H.M. Ul Haq, S. Yousuf, M.U. Khan, Z. Ahmed, J. Aziz, M.W. Iqbal, A. ur Rehman, M.Z. Iqbal, Van der Waals multi-heterostructures (PN, PIN, and NPN) for dynamic rectification in 2D materials. Adv. Mater. Interfaces 7(24), 2001479 (2020). https://doi.org/10.1002/admi.202001479

    Article  CAS  Google Scholar 

  2. X. Guan, X. Yu, D. Periyanagounder, M.R. Benzigar, J.K. Huang, C.H. Lin, J. Kim, S. Singh, L. Hu, G. Liu, D. Li, Recent progress in short-to long‐wave infrared photodetection using 2D materials and heterostructures. Adv. Opt. Mater. 9(4), 2001708 (2021). https://doi.org/10.1002/adom.202001708

    Article  CAS  Google Scholar 

  3. G.S. Shanker, A. Biswas, S. Ogale, 2D materials and their heterostructures for photocatalytic water splitting and conversion of CO2 to value chemicals and fuels. J. Phys. Energy 3, 022003 (2021). https://doi.org/10.1088/2515-7655/abdcab

    Article  CAS  Google Scholar 

  4. X.T. Liu, J.R. Chen, Y. Wang, S.T. Han, Y. Zhou, Building functional memories and logic circuits with 2D boron nitride. Adv. Funct. Mater. 31(4), 2004733 (2021). https://doi.org/10.1002/adfm.202004733

    Article  CAS  Google Scholar 

  5. L. Tong, Z. Peng, R. Lin, Z. Li, Y. Wang, X. Huang, K.H. Xue, H. Xu, F. Liu, H. Xia, P. Wang, 2D materials–based homogeneous transistor-memory architecture for neuromorphic hardware. Science 373(6561), 1353–1358 (2021). https://doi.org/10.1126/science.abg3161

    Article  CAS  Google Scholar 

  6. L. Yin, R. Cheng, Z. Wang, F. Wang, M.G. Sendeku, Y. Wen, X. Zhan, J. He, Two-dimensional unipolar memristors with logic and memory functions. Nano Lett. 20(6), 4144–4152 (2020). https://doi.org/10.1021/acs.nanolett.0c00002

    Article  CAS  Google Scholar 

  7. S. Conti, L. Pimpolari, G. Calabrese, R. Worsley, S. Majee, D.K. Polyushkin, M. Paur, S. Pace, D.H. Keum, F. Fabbri, G. Iannaccone, Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nat. Commun. 11(1), 1–9 (2020). https://doi.org/10.1038/s41467-020-17297-z

    Article  CAS  Google Scholar 

  8. J. Jiang, Y. Zhang, A. Wang, J. Duan, H. Ji, J. Pang, Y. Sang, X. Feng, H. Liu, L. Han, Construction of high field-effect mobility multilayer MoS2 field-effect transistors with excellent stability through interface engineering. ACS Appl. Electron. Mater. 2(7), 2132–2140 (2020). https://doi.org/10.1021/acsaelm.0c00347

    Article  CAS  Google Scholar 

  9. K. Nakamura, N. Nagamura, K. Ueno, T. Taniguchi, K. Watanabe, K. Nagashio, All 2D heterostructure tunnel field-effect transistors: impact of band alignment and heterointerface quality. ACS Appl. Mater. Interfaces 12(46), 51598–51606 (2020). https://doi.org/10.1021/acsami.0c13233

    Article  CAS  Google Scholar 

  10. B.W. Su, B.W. Yao, X.L. Zhang, K.X. Huang, D.K. Li, H.W. Guo, X.K. Li, X.D. Chen, Z.B. Liu, J.G. Tian, A gate-tunable symmetric bipolar junction transistor fabricated via femtosecond laser processing. Nanoscale Adv. 2(4), 1733–1740 (2020). https://doi.org/10.1039/D0NA00201A

    Article  CAS  Google Scholar 

  11. B.W. Su, X.L. Zhang, B.W. Yao, H.W. Guo, D.K. Li, X.D. Chen, Z.B. Liu, J.G. Tian, Laser writable multifunctional van der Waals heterostructures.  Small 16(50), 2003593 (2020). https://doi.org/10.1002/smll.202003593

    Article  CAS  Google Scholar 

  12. L. Lucchesi, G. Calogero, G. Fiori, G. Iannaccone, Ballistic two-dimensional lateral heterojunction bipolar transistor. Phys. Rev. Res. 3(2), 023158 (2021). https://doi.org/10.1103/PhysRevResearch.3.023158

    Article  CAS  Google Scholar 

  13. A.M. Afzal, M.Z. Iqbal, G. Dastgeer, G. Nazir, S. Mumtaz, M. Usman, J. Eom, WS2/GeSe/WS2 bipolar transistor-based chemical sensor with fast response and recovery times. ACS Appl. Mater. Interfaces 12(35), 39524–39532 (2020). https://doi.org/10.1021/acsami.0c05114

    Article  CAS  Google Scholar 

  14. L. Liu, N. Xu, Y. Zhang, P. Zhao, H. Chen, S. Deng, Van der Waals bipolar junction transistor using vertically stacked two-dimensional atomic crystals. Adv. Funct. Mater. 29(17), 1807893 (2019). https://doi.org/10.1002/adfm.201807893

    Article  CAS  Google Scholar 

  15. S. Fan, Q.A. Vu, S. Lee, T.L. Phan, G. Han, Y.M. Kim, W.J. Yu, Y.H. Lee, Tunable negative differential resistance in van der Waals heterostructures at room temperature by tailoring the interface. ACS nano. 13(7), 8193–8201 (2019). https://doi.org/10.1021/acsnano.9b03342

    Article  CAS  Google Scholar 

  16. J. He, N. Fang, K. Nakamura, K. Ueno, T. Taniguchi, K. Watanabe, K. Nagashio, 2D tunnel field effect transistors (FETs) with a stable charge-transfer‐type p+‐WSe2 source. Adv. Electron. Mater. 4(7), 1800207 (2018). https://doi.org/10.1002/aelm.201800207

    Article  CAS  Google Scholar 

  17. N. Oliva, J. Backman, L. Capua, M. Cavalieri, M. Luisier, A.M. Ionescu, WSe2/SnSe2 vdW heterojunction Tunnel FET with subthermionic characteristic and MOSFET co-integrated on same WSe2 flake. NPJ 2D Mater. Appl. 4(1), 1–8 (2020). https://doi.org/10.1038/s41699-020-0142-2

    Article  CAS  Google Scholar 

  18. Z. Jin, X. Li, J.T. Mullen, K.W. Kim, Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides. Phys. Rev. B 90(4), 045422 (2014). https://doi.org/10.1103/PhysRevB.90.045422

    Article  CAS  Google Scholar 

  19. A. Allain, A. Kis, Electron and hole mobilities in single-layer WSe2. ACS Nano 8(7), 7180–7185 (2014). https://doi.org/10.1021/nn5021538

    Article  CAS  Google Scholar 

  20. J. Kim, H. Park, S. Yoo, Y.H. Im, K. Kang, J. Kim, Defect-Engineered n‐Doping of WSe2 via Argon Plasma Treatment and Its Application in Field‐Effect Transistors. Adv. Mater. Interfaces 8(14), 2100718 (2021). https://doi.org/10.1002/admi.202100718

    Article  CAS  Google Scholar 

  21. J.S. Narro-Rios, M. Ramachandran, D. Martínez-Escobar, A. Sánchez-Juárez, Ultrasonic spray pyrolysis deposition of SnSe and SnSe2 using a single spray solution. J. Semicond. 34(1), 013001 (2013). https://doi.org/10.1088/1674-4926/34/1/013001

    Article  CAS  Google Scholar 

  22. X. Yan, C. Liu, C. Li, W. Bao, S. Ding, D.W. Zhang, P. Zhou, Tunable SnSe2/WSe2 heterostructure tunneling field effect transistor. Small 13(34), 1701478 (2017). https://doi.org/10.1002/smll.201701478

    Article  CAS  Google Scholar 

  23. X. Li, X. Dai, H. Xu, K. Shen, J. Guo, C. Li, G. Zou, K.L. Choy, I.P. Parkin, Z. Guo, H. Liu, Multifunctional two-dimensional glassy graphene devices for vis-NIR photodetection and volatile organic compound sensing. Sci. China Mater. 64(8), 1964–1976 (2021). https://doi.org/10.1007/s40843-020-1601-9

    Article  CAS  Google Scholar 

  24. S. Guo, K. Wu, C. Li, H. Wang, Z. Sun, D. Xi, S. Zhang, W. Ding, M.E. Zaghloul, C. Wang, F.A. Castro, Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter 4(3), 969–985 (2021). https://doi.org/10.1016/j.matt.2020.12.002

    Article  CAS  Google Scholar 

  25. M.M. Furchi, D.K. Polyushkin, A. Pospischil, T. Mueller, Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 14(11), 6165–6170 (2014). https://doi.org/10.1021/nl502339q

    Article  CAS  Google Scholar 

  26. M.H. Doan, Y. Jin, S. Adhikari, S. Lee, J. Zhao, S.C. Lim, Y.H. Lee, Charge transport in MoS2/WSe2 van der Waals heterostructure with tunable inversion layer. ACS Nano 11(4), 3832–3840 (2017). https://doi.org/10.1021/acsnano.7b00021

    Article  CAS  Google Scholar 

  27. E.P. Mukhokosi, B. Roul, S.B. Krupanidhi, K.K. Nanda, Toward a fast and highly responsive SnSe2-based photodiode by exploiting the mobility of the counter semiconductor. ACS Appl. Mater. Interfaces 11(6), 6184–6194 (2019). https://doi.org/10.1021/acsami.8b16635

    Article  CAS  Google Scholar 

  28. D.S. Schulman, A.J. Arnold, S. Das, Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47(9), 3037–3058 (2018). https://doi.org/10.1039/C7CS00828G

    Article  CAS  Google Scholar 

  29. M. Zhang, X. Liu, X. Duan, S. Zhang, C. Liu, D. Wan, G. Li, Z. Xia, Z. Fan, L. Liao, Schottky-contacted WSe2 hot-electron photodetectors with fast response and high sensitivity. ACS Photon. 9(1), 132–137 (2022). https://doi.org/10.1021/acsphotonics.1c01256

    Article  CAS  Google Scholar 

  30. H.J. Jin, C. Park, K.J. Lee, G.H. Shin, S.Y. Choi, Ultrasensitive WSe2/a-In2Se3 NIR photodetector based on ferroelectric gating effect. Adv. Mater. Technol. 6(11), 2100494 (2021). https://doi.org/10.1002/admt.202100494

    Article  CAS  Google Scholar 

  31. X. Tian, Y. Liu, Van der Waals heterojunction ReSe2/WSe2 polarization-resolved photodetector. J. Semicond. 42(3), 032001 (2021). https://doi.org/10.1088/1674-4926/42/3/032001

    Article  CAS  Google Scholar 

  32. S. Ghosh, A. Varghese, K. Thakar, S. Dhara, S. Lodha, Enhanced responsivity and detectivity of fast WSe2 phototransistor using electrostatically tunable in-plane lateral pn homojunction. Nat. Commun. 12(1), 1–9 (2021). https://doi.org/10.1038/s41467-021-23679-8

    Article  CAS  Google Scholar 

  33. W. Gao, Z. Zheng, L. Huang, J. Yao, Y. Zhao, Y. Xiao, J. Li, Self-powered SnS1–x Se x alloy/silicon heterojunction photodetectors with high sensitivity in a wide spectral range. ACS Appl. Mater. Interfaces 11(43), 40222–40231 (2019). https://doi.org/10.1021/acsami.9b12276

    Article  CAS  Google Scholar 

  34. M. Vemula, S. Veeralingam, S. Badhulika, Hybrid 2D/0D SnSe2-SnO2 vertical junction based high performance broadband photodetector. J. Alloys Compd. 883, 160826 (2021). https://doi.org/10.1016/j.jallcom.2021.160826

    Article  CAS  Google Scholar 

  35. M. Kang, S. Rathi, I. Lee, L. Li, M.A. Khan, D. Lim, Y. Lee, J. Park, A.T. Pham, A.T. Duong, S. Cho, Photodetector based on multilayer SnSe2 field effect transistor. J. Nanosci. Nanotechnol. 18(6), 4243–4247 (2018). https://doi.org/10.1166/jnn.2018.15189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brain Pool Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (NRF-2019H1D3A1A01102658). This study was supported by a research fund from Chosun University (2021).

Author information

Authors and Affiliations

Authors

Contributions

All persons who meet the authorship criteria are listed as authors. All authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, and revision of the manuscript. Furthermore, each author certifies that this material or similar material has not been submitted to nor will be published in any other publication before its appearance in the Journal of Materials Science: Materials in Electronics.

Corresponding author

Correspondence to Pil Ju Ko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abderrahmane, A., Woo, C. & Ko, P.J. Multifunctional WSe2/SnSe2/WSe2 van der Waals heterostructures. J Mater Sci: Mater Electron 33, 11841–11850 (2022). https://doi.org/10.1007/s10854-022-08147-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08147-3

Navigation