Skip to main content
Log in

Effect of annealing atmosphere on photoluminescence and gas sensing of solution-combustion-synthesized Al, Pd co-doped ZnO nanoparticles

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Al, Pd co-doped ZnO nanoparticles (NPs) synthesized using a solution combustion method and subsequent annealing process under various atmospheres, including air, nitrogen, and hydrogen, were characterized using x-ray diffraction, energy-dispersive x-ray spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The gas-sensing properties of the sensors based on the NPs were also examined. The results indicated that the Al, Pd co-doped ZnO NPs, with an average crystallite size of 10 nm, exhibited enhanced gas-sensing performance compared with that of pure ZnO and Al-doped ZnO. The response of the Al, Pd co-doped ZnO NPs annealed in N2 to ethanol (49.22) was nearly 5.7 times higher than that to acetone (8.61) and approximately 20 – 27 times higher than that to benzene (2.38), carbon monoxide (2.23), and methane (1.78), which demonstrates their excellent selectivity to ethanol versus other gases. This high ethanol response can be attributed to the combined effects of the small size, Schottky barrier, lattice defects, and catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Wei, L. H. Pan, and W. Huang, Mater. Sci. Eng. B-Adv. 176, 1409 (2011).

    Article  Google Scholar 

  2. S. Y. Zhang and Q. X. Cao, Mat. Sci. Semicon. Proc. 16, 1447 (2013).

    Article  Google Scholar 

  3. S. W. Choi and S. S. Kim, Sensor Actuat. B-Chem. 168, 8 (2012).

    Article  Google Scholar 

  4. Y. Li, G.-Z. Li, Y.-L. Zou, Q. Wang, Q.-J. Zhou, and X.-X. Lian, T. Nonferr. Metal. Soc. 24, 2896 (2014).

    Article  Google Scholar 

  5. Q. J. Feng, L. Z. Hu, H. W. Liang, Y. Feng, J. Wang, J. C. Sun, J. Z. Zhao, M. K. Li, and L. Dong, Appl. Surf. Sci. 257, 1084 (2010).

    Article  Google Scholar 

  6. R. Rusdi, A. A. Rahman, N. S. Mohamed, N. Kamarudin, and N. Kamarulzaman, Powder Technol. 210, 18 (2011).

    Article  Google Scholar 

  7. B. Wang, Z. Q. Zheng, L. F. Zhu, Y. H. Yang, and H. Y. Wu, Sensor Actuat. B-Chem. 195, 549 (2014).

    Article  Google Scholar 

  8. P. L. Wang, Y. M. Fu, B. W. Yu, Y. Y. Zhao, L. L. Xing, and X. Y. Xue, J. Mater. Chem. A 3, 3529 (2015).

    Article  Google Scholar 

  9. Y. Y. Zhao, X. Lai, P. Deng, Y. X. Nie, Y. Zhang, L. L. Xing, and X. Y. Xue, Nanotechnology 25, 115502 (2014).

    Article  Google Scholar 

  10. Z. Lou, Y. L. Feng, X. W. Liu, L. L. Wang, and T. Zhang, Biomed. Eng.-App. Bas. C 24, 99 (2012).

    Article  Google Scholar 

  11. P. V. Adhyapak, S. P. Meshram, A. A. Pawar, D. P. Amalnerkar, U. P. Mulik, and I. S. Mulla, Ceram. Int. 40, 12105 (2014).

    Article  Google Scholar 

  12. J. Q. He, J. Yin, D. Liu, L. X. Zhang, F. S. Cai, and L. J. Bie, Sensor Actuat. B-Chem. 182, 170 (2013).

    Article  Google Scholar 

  13. C. M. Chang, M. H. Hon, and I. C. Leu, Rsc. Adv. 2, 2469 (2012).

    Article  Google Scholar 

  14. Z. Yang, L.-M. Li, Q. Wan, Q.-H. Liu, and T.-H. Wang, Sensor Actuat. B-Chem. 135, 57 (2008).

    Article  Google Scholar 

  15. S. S. Kim, H. G. Na, S. W. Choi, D. S. Kwak, and H. W. Kim, Microelectron. Eng. 105, 1 (2013).

    Article  Google Scholar 

  16. B. Y. Wang, D. S. Lim, and Y. J. Oh, Jpn. J. Appl. Phys. 52, 101 (2013).

    Google Scholar 

  17. Y. Li, Y. L. Zou, and Y. Y. Hou, Cryst. Res. Technol. 46, 305 (2011).

    Article  Google Scholar 

  18. C. Jin, S. Park, H. Kim, S. An, and C. Lee, B Korean Chem. Soc. 33, 1993 (2012).

    Article  Google Scholar 

  19. K. Vijayalakshmi and K. Karthick, Int. J. Hydrogen Energy 39, 7165 (2014).

    Article  Google Scholar 

  20. A. Mohanta, J. G. Simmons, H. O. Everitt, G. Shen, S. M. Kim, and P. Kung, J. Lumin. 146, 470 (2014).

    Article  Google Scholar 

  21. L. Yu, S. Liu, B. Yang, J. Wei, M. Lei, and X. Fan, Mater. Lett. 141, 79 (2015).

    Article  Google Scholar 

  22. J. P. Huo, L. T. Fang, Y. L. Lei, G. C. Zeng, and H. P. Zeng, J. Mater. Chem. A 2, 11040 (2014).

    Article  Google Scholar 

  23. S. D. Shinde, G. E. Patil, D. D. Kajale, V. B. Gaikwad, and G. H. Jain, J. Alloy Compd. 528, 109 (2012).

    Article  Google Scholar 

  24. J. Guo, J. Zhang, M. Zhu, D. Ju, H. Xu, and B. Cao, Sensor Actuat. B-Chem. 199, 339 (2014).

    Article  Google Scholar 

  25. Y. Matsushima, R. Toyoda, H. Mori-Ai, A. Kondo, and K. Maeda, J. Ceram. Soc. Japan 122, 96 (2014).

    Article  Google Scholar 

  26. S. H. Kim, A. Umar, Y.-B. Hahn, A. Al-Hajry, and M. Abaker, J. Nanosci. Nanotechnol. 14, 4564 (2014).

    Article  Google Scholar 

  27. K. Demeestere, J. Dewulf, T. Ohno, P. H. Salgado, and H. Van Langenhove, Appl. Catal B-Environ. 61, 140 (2005).

    Article  Google Scholar 

  28. J. H. Yang, M. Gao, L. L. Yang, Y. J. Zhang, J. H. Lang, D. D. Wang, Y. X. Wang, H. L. Liu, and H. G. Fan, Appl. Surf. Sci. 255, 2646 (2008).

    Article  Google Scholar 

  29. M. Wang, C. H. Ye, Y. Zhang, G. M. Hua, H. X. Wang, M. G. Kong, and L. D. Zhang, J. Cryst. Growth 291, 334 (2006).

    Article  Google Scholar 

  30. H. B. Zeng, G. T. Duan, Y. Li, S. K. Yang, X. X. Xu, and W. P. Cai, Adv. Funct. Mater. 20, 561 (2010).

    Article  Google Scholar 

  31. P. Hu, X. Zhang, N. Han, W. C. Xiang, Y. B. Cao, and F. L. Yuan, Cryst. Growth Des. 11, 1520 (2011).

    Article  Google Scholar 

  32. S. H. Wei, Y. Yu, and M. H. Zhou, Mater. Lett. 64, 2284 (2010).

    Article  Google Scholar 

  33. N. N. Dai, Z. L. Lou, Z. H. Wang, X. X. Liu, Y. M. Yan, J. S. Qiao, T. Z. Jiang, and K. N. Sun, J. Power Sources 243, 766 (2013).

    Article  Google Scholar 

  34. J. Q. Liu, G. H. Jin, Z. X. Zhai, F. F. Monica, and X. S. Liu, Electron. Mater. Lett. 11, 457 (2015).

    Article  Google Scholar 

  35. R. C. Pawar, J. S. Shaikh, A. V. Moholkar, S. M. Pawar, J. H. Kim, J. Y. Patil, S. S. Suryavanshi, and P. S. Patil, Sensor Actuat. B-Chem. 151, 212 (2010).

    Article  Google Scholar 

  36. S. Ju, S. Kim, S. Mohammadi, D. B. Janes, Y. G. Ha, A. Facchetti, and T. J. Marks, Appl. Phys. Lett. 92, 022104 (2008).

    Article  Google Scholar 

  37. R. C. Pawar, J. W. Lee, V. B. Patil, and C. S. Lee, Sensor Actuat. B-Chem. 187, 323 (2013).

    Article  Google Scholar 

  38. Y. J. Lin, P. Deng, Y. X. Nie, Y. F. Hu, L. L. Xing, Y. Zhang, and X. Y. Xue, Nanoscale, 6, 4604 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, M., Lv, T. et al. Effect of annealing atmosphere on photoluminescence and gas sensing of solution-combustion-synthesized Al, Pd co-doped ZnO nanoparticles. Electron. Mater. Lett. 11, 1085–1092 (2015). https://doi.org/10.1007/s13391-015-5224-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5224-5

Keywords

Navigation