Skip to main content
Log in

Effects of pressure and deposition time on the characteristics of In2Se3 films grown by magnetron sputtering

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Crystalline In2Se3 films were fabricated by magnetron sputtering from a sintered In2Se3-compound target and the effects of the deposition parameters, including the working pressure and deposition time, on the phase composition, structure, morphology, and optical properties were clarified. Single-phase κ-In2Se3 was prepared at 4.0 Pa, but γ-In2Se3 was recognized when the working pressure was lower than 4.0 Pa. The optical transmittance of the films decreased to 45% and the optical band gap varied from 2.9 to 2.0 eV with increasing film thickness from 80 to 967 nm. Metal-semiconductor-metal (MSM) photodetectors based on γ-In2Se3 thin films with various thicknesses were also fabricated. The result of photosensitivity research on such MSM photodetectors suggests that it may be impossible to fabricate wide-absorption-range MSM devices by just using a single material (γ-In2Se3) because of spatial potential fluctuations in the layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Julien, M. Eddrief, K. Kambas, and M. Balkanski, Thin Solid Films 137, 27 (1986).

    Article  Google Scholar 

  2. S. H. Kwon, B. T. Ahn, S. K. Kim, K. H. Yoon, and J. Song, Thin Solid Films 323, 265 (1998).

    Article  Google Scholar 

  3. T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, Acs Nano. 4, 1596 (2010).

    Article  Google Scholar 

  4. X. Tao and Y. Gu, Nano Lett. 13, 3501 (2013).

    Article  Google Scholar 

  5. B. Thomas, Appl. Phys. A-Mater. 54, 293 (1992).

    Article  Google Scholar 

  6. D. Eddike, A. Ramdani, G. Brun, J. C. Tedenac, and B. Liautard, Mater. Res. Bull. 33, 519 (1998).

    Article  Google Scholar 

  7. Y. C. Huang, Z. Y. Li, W. Y. Uen, S. M. Lan, K. J. Chang, Z. J. Xie, J. Y. Chang, S. C. Wang, and J. L. Shen, J. Cryst. Growth 310, 1679 (2008).

    Article  Google Scholar 

  8. C. H. de Groot and J. S. Moodera, J. Appl. Phys. 89, 4336 (2001).

    Article  Google Scholar 

  9. H. M. Pathan, S. S Kulkarni, R. S. Mane, and C. D. Lokhande, Mater. Chem. Phys. 93, 16 (2005).

    Article  Google Scholar 

  10. S. Marsillac, J. C. Bernede, R. Leny, and A. Conan, Vacuum 46, 1315 (1995).

    Article  Google Scholar 

  11. T. Okamoto, A. Yamada, and M. Konagai, J. Cryst. Growth 175, 1045 (1997).

    Article  Google Scholar 

  12. J. H. Park, M. Afzaal, M. Helliwell, M. A. Malik, P. O’Brien, and J. Raftery, Chem. Mater. 15, 4205 (2003).

    Article  Google Scholar 

  13. M. Valdes, M. Vazquez, and A. Goossens, Electrochim. Acta 54, 524 (2008).

    Article  Google Scholar 

  14. I. H. Mutlu, M. Z. Zarbaliyev, and F. Aslan, J. Sol-Gel. Sci. Techn. 43, 223 (2007).

    Article  Google Scholar 

  15. C. Amory, J. C. Bernede, and S. Marsillac, J. Appl. Phys. 94, 6945 (2003).

    Article  Google Scholar 

  16. Y. Yan, S. Li, Y. Ji, L. Liu, C. Yan, Y. Zhang, Z. Yu, and Y. Zhao, Mater. Lett. 109, 291 (2013).

    Article  Google Scholar 

  17. S. Li, Y. Yan, Y. Zhang, Y. Ou, Y. Ji, L. Liu, C. Yan, Y. Zhao, and Z. Yu, Vacuum. 99, 228 (2014).

    Article  Google Scholar 

  18. J. Musil, Vacuum. 50, 363 (1998).

    Article  Google Scholar 

  19. N. Revathi, P. Prathap, and K. T. R. Reddy, Solid. State. Commun. 11, 1288 (2009).

    Google Scholar 

  20. S. M. Yu, J. H. Yoo, S. P. Patole, J. H. Lee, and J.-B. Yoo, Electron. Mater. Lett. 8, 245 (2012).

    Article  Google Scholar 

  21. J. Jasinski, W. Swider, J. Washburn, Z. Liliental-Weber, A. Chaiken, K. Nauka, G. A. Gibson, and C. C. Yang, Appl. Phys. Lett. 81, 4356 (2002).

    Article  Google Scholar 

  22. D. Y. Lyu, T. Y. Lin, T. W. Chang, S. M. Lan, T. N. Yang, C. C. Chiang, C. L. Chen, and H. P. Chiang, J. Alloy. Compd. 499, 104 (2010).

    Article  Google Scholar 

  23. C. Julien, A. Chevy, and D. Siapkas, Phys. Stat. Sol. A. 118, 553 (1990).

    Article  Google Scholar 

  24. M. Emziane, S. Marsillac, J. Ouerfelli, J. C. Bernede, and R. Le Ny, Vacuum. 48, 871 (1997).

    Article  Google Scholar 

  25. C.-H. Ho, Y.-C. Chen, and C.-C. Pan, J. Appl. Phys. 115, 033501 (2014).

    Article  Google Scholar 

  26. J. Venables, Introduction to Surface and Thin Film Processes, p. 38, Cambridge University Press, London (2000).

    Book  Google Scholar 

  27. J. B. Hudson, Surface Science: An Introduction, p. 25, John Wiley & Sons, NewYork (1998).

    Google Scholar 

  28. C.-H. Ho and Y.-C. Chen, RSC Adv. 3, 24896 (2013).

    Article  Google Scholar 

  29. J. C. Bernede, S. Marsillac, and A. Conan, Mater. Chem. Phys. 48, 5 (1997).

    Article  Google Scholar 

  30. F. Taghibakhsh, I. Khodami, and K. S. Karim, IEEE T. Electron. Dev. 55, 337 (2008).

    Article  Google Scholar 

  31. H. Fritzsche, J. Non-Cryst. Solids 6, 49 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Li, S., Ou, Y. et al. Effects of pressure and deposition time on the characteristics of In2Se3 films grown by magnetron sputtering. Electron. Mater. Lett. 10, 1093–1101 (2014). https://doi.org/10.1007/s13391-014-4081-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-4081-y

keywords

Navigation