Skip to main content
Log in

Thickness-Dependent Structural and Optoelectronic Properties of In2O3 Films Prepared by Spray Pyrolysis Technique

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, nanostructured In2O3 thin films with thickness in the range of 40–160 nm were deposited on glass substrates by the chemical spray pyrolysis technique. The microstructural, surface morphology and optical properties were investigated as a function of film thickness through x-ray diffraction, scanning electron microscopy equipped with energy dispersive spectroscopy, atomic force microscopy, Raman spectroscopy, UV–visible spectroscopy and photoluminescence measurements. The x-ray diffraction analysis showed that the deposited films were polycrystalline in nature with a cubic structure having (222) as preferred orientation. The morphological analyses of the samples exhibited uniform and smooth surface of the films with systematical increments in the surface roughness with increasing film thickness. The grain size increased from 9 nm to 13 nm with increasing film thickness. Raman spectroscopy has been employed to study the crystalline quality and the structural disorder of the films. A blue-shift in the energy band gap (E g) from 3.74 eV to 3.98 eV was observed with the increase of film thickness. Moreover, photoluminescence peaks of the In2O3 films appeared at 443 nm and 527 nm for all films. The thickness had a substantial influence on the microstructural and optical properties as well as on the luminescence intensity of the films. The strategy presented here indicates that the prepared films could be suitable candidates for optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zeng, J.P. Liu, Z.L. Wang, and S. Sun, Nature 420, 395 (2002).

    Article  Google Scholar 

  2. Z. Wang, B. Huang, Y. Dai, X. Qin, X. Zhang, P. Wang, H. Liu, and J. Yu, J. Phys. Chem. C 113, 4612 (2009).

    Article  Google Scholar 

  3. K. Hara, Sol. Energy Mater. Sol. Cells 64, 115 (2000).

    Article  Google Scholar 

  4. R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, and M. Tachiya, J. Phys. Chem. B 108, 4818 (2004).

    Article  Google Scholar 

  5. M.A.M. Khan, W. Khan, M. Ahamed, and M. Alhoshan, Mater. Lett. 79, 119 (2012).

    Article  Google Scholar 

  6. C.W. Dhananjay and C.-W. Chu, Appl. Phys. Lett. 91, 132111 (2007).

    Article  Google Scholar 

  7. D. Zhang, C. Li, X. Liu, S. Han, T. Tang, and C. Zhou, Appl. Phys. Lett. 83, 1845 (2003).

    Article  Google Scholar 

  8. D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, and C. Zhou, Nano Lett. 41, 919 (2004).

    Google Scholar 

  9. J. Ni, H. Yan, A. Wang, Y. Yang, C.L. Stem, A.W. Metz, S. Jim, L. Wang, T.J. Marks, J.R. Ireland, and C. Kannewurf, J. Am. Chem. Soc. 127, 5613 (2005).

    Article  Google Scholar 

  10. S.-E. Lin and W.-C.J. Wei, J. Am. Ceram. Soc. 91, 1121 (2008).

    Article  Google Scholar 

  11. A. Murali, A. Barve, V.J. Leppert, and S.H. Risbud, Nano Lett. 1, 287 (2001).

    Article  Google Scholar 

  12. S. Avivi, Y. Mastai, and A. Gedanken, Chem. Mater. 12, 1229 (2002).

    Article  Google Scholar 

  13. D.P. Dutta, V. Sudarsan, P. Srinivasan, A. Vinu, and A.K. Tyagi, J. Phys. Chem. C 112, 6781 (2008).

    Article  Google Scholar 

  14. W.S. Seo, H.H. Jo, K. Lee, and J.T. Park, Adv. Mater. 15, 795 (2003).

    Article  Google Scholar 

  15. G. Cheng, E. Stern, S. Guthrie, M.A. Reed, R. Klie, Y. Hao, G. Meng, and L. Zhang, Appl. Phys. A 85, 233 (2006).

    Article  Google Scholar 

  16. G. Kiriakidis and N.J. Katsarakis, J. Phys. Condens. Matter 16, S3757 (2004).

    Article  Google Scholar 

  17. D. Chu, Y.-P. Zeng, D. Jiang, and J. Xu, Nanotechnology 18, 435605 (2007).

    Article  Google Scholar 

  18. Y. Zhao, A. Zhang, Z. Wu, and H. Dang, Langmuir 20, 27 (2004).

    Article  Google Scholar 

  19. W.H. Ho, C.F. Li, H.C. Liu, and S.K. Yen, J. Power Sources 175, 897 (2008).

    Article  Google Scholar 

  20. A. Bourlang, D.J. Payne, R.G. Egdell, J.S. Foord, P.P. Edwards, M.O. Jones, A. Schertel, P.J. Dobson, and J.L. Hutchison, Appl. Phys. Lett. 92, 092117 (2008).

    Article  Google Scholar 

  21. C. Matsumoto, J. Suzuki, M. Ohnuma, Y. Kanemitsu, and Y. Matsumoto, Phys. Rev. B 63, 195322 (2001).

    Article  Google Scholar 

  22. M.A.M. Khan, W. Khan, M. Ahamed, M.S. Alsalhi, and T. Ahmed, Electron. Mater. Lett. 9, 53 (2013).

    Article  Google Scholar 

  23. C.Y. Wang, V. Cimalla, H. Romanus, T. Kups, G. Ecke, T. Stauden, M. Ali, V. Lebedev, J. Pezoldt, and O. Ambacher, Appl. Phys. Lett. 89, 011904 (2006).

    Article  Google Scholar 

  24. B.D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Reading, MA: Addison-Wesley, 1978).

    Google Scholar 

  25. G. Yildirim, S. Bal, M. Gulen, A. Varilci, E. Budak, and M. Akdogan, Cryst. Res. Technol. 47, 195 (2012).

    Article  Google Scholar 

  26. G. Yildirim, M. Akdogan, A. Varilci, and C. Terzioglu, Cryst. Res. Technol. 45, 1161 (2010).

    Article  Google Scholar 

  27. W.B. White and V.G. Keramidas, Spectrochim. Acta A 28, 501 (1972).

    Article  Google Scholar 

  28. S. Sahoo, A.P.S. Gaur, A.K. Arora, and R.S. Katiyar, Chem. Phys. Lett. 510, 242 (2011).

    Article  Google Scholar 

  29. A. Singhal, S.N. Achary, J. Manjanna, O.D. Jayakumar, R.M. Kadam, and A.K. Tyagi, J. Phys. Chem. C 113, 3600 (2006).

    Article  Google Scholar 

  30. R. Caracas and R.E. Cohen, Phys. Rev. B 76, 184101 (2007).

    Article  Google Scholar 

  31. O.M. Berengure, A.D. Rodrigues, C.J. Dalmaschio, A.J.C. Lanfredi, E.R. Leite, and A.J. Chiquito, J. Phys. D Appl. Phys. 43, 045401 (2010).

    Article  Google Scholar 

  32. J. Du, M. Yang, S.N. Cha, D. Rhen, M. Kang, and D.J. Kang, Cryst. Growth Des. 8, 2312 (2008).

    Article  Google Scholar 

  33. M.A.M. Khan, S. Kumar, and M.S. AlSalhi, Mater. Res. Bull. 48, 4277 (2013).

    Article  Google Scholar 

  34. M.A.M. Khan, M.W. Khan, M. Husain, and M. Zulfequar, J. Alloys Compd. 486, 876 (2009).

    Article  Google Scholar 

  35. E. Burstein, Phys. Rev. 93, 632 (1954).

    Article  Google Scholar 

  36. S.M. Park, T. Ikegami, K. Ebihara, and P.K. Shin, Appl. Surf. Sci. 253, 1522 (2006).

    Article  Google Scholar 

  37. F. Lai, M. Li, H. Wang, H. Hu, X. Wang, J.G. Hou, Y. Song, and Y. Jiang, Thin Solid Films 488, 314 (2005).

    Article  Google Scholar 

  38. K. Soulantica, L. Erades, M. Sauvan, F. Senooq, A. Maisonnat, and B. Chaudret, Adv. Funct. Mater. 13, 553 (2003).

    Article  Google Scholar 

  39. Y.H. Ng, S. Ikeda, T. Harada, S. Higashida, T. Sakat, H. Mori, and M. Matsumura, Adv. Mater. 19, 597 (2007).

    Article  Google Scholar 

  40. Y. Ohhata, F. Shinoki, and S. Yoshida, Thin Solid Films 59, 255 (1979).

    Article  Google Scholar 

  41. C.-J. Chen, W.-L. Xu, and M.-Y. Chern, Adv. Mater. 19, 3012 (2007).

    Article  Google Scholar 

  42. F. Zeng, X. Zhang, J. Wang, L. Wang, and L. Zhang, Nanotechnology 15, 596 (2004).

    Article  Google Scholar 

  43. C. Liang, G. Meng, Y. Lei, F. Phillipp, and L. Zhang, Adv. Mater. 13, 1330 (2001).

    Article  Google Scholar 

  44. D.A. Magdas, A. Cremades, and J. Piqueras, Appl. Phys. Lett. 88, 113107 (2006).

    Article  Google Scholar 

  45. Y. Li, Y. Bando, and D. Golberg, Adv. Mater. 15, 581 (2003).

    Article  Google Scholar 

  46. C.H. Liang, G.W. Meng, Y. Lei, F. Phillipp, and L.D. Zhang, Adv. Mater. (Weinheim, Ger.) 13, 1330 (2001).

    Article  Google Scholar 

  47. M.J. Zheng, L.D. Zhang, G.H. Li, X.Y. Zhang, and X.F. Wang, Appl. Phys. Lett. 79, 839 (2001).

    Article  Google Scholar 

  48. H.Q. Cao, X.Q. Qiu, Y. Liang, Q.M. Zhu, and M.J. Zhao, Appl. Phys. Lett. 83, 761 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Majeed Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A.M., Khan, W. Thickness-Dependent Structural and Optoelectronic Properties of In2O3 Films Prepared by Spray Pyrolysis Technique. J. Electron. Mater. 45, 4453–4459 (2016). https://doi.org/10.1007/s11664-016-4618-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4618-y

Keywords

Navigation