Skip to main content
Log in

Enhanced performance of γ-In2Se3 photodetector on ITO-coated interdigital electrodes fabricated via RF-magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we investigated the effect of RF sputtering power on the structural, morphological, optical, and photodetector properties of γ-In2Se3 thin films. The In2Se3 films were deposited at 80 W, 100 W, 120 W, and 150 W and characterized using XRD, Raman spectroscopy, FE-SEM, and EDS. The XRD results showed that the rise in RF sputtering power enhanced the crystallinity of the prepared films. The formation of the γ phase of In2Se3 was confirmed by Raman spectroscopy. FE-SEM images showed that the In2Se3 films were compact, smooth, and had uniform grain growth. The increase in film thickness with RF power was observed in cross-sectional FE-SEM. The EDS analysis confirmed that as-prepared γ-In2Se3 films have stoichiometric chemical composition. The optical bandgap of the films decreased from 2.07 to 1.85 eV with an increase in RF power, which can be attributed to an increase in crystallite size due to an increase in RF power. The optoelectronic performance of the films was evaluated by fabricating γ-In2Se3 photodetectors. The photodetector fabricated at 100 W sputtering power had excellent performance. It had a detectivity of 2.5 × 108 Jones, photoresponsivity of 17 µA/W, fast rise time of 0.27 s, and decay times of 0.31 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Y. Fang, H. Zhang, F. Azad, S. Wang, F. Ling, S. Su, Band offset and an ultra-fast response UV-VIS photodetector in γ-In2Se3/p-Si heterojunction heterostructures. RSC Adv. 8, 29555–29561 (2018). https://doi.org/10.1039/C8RA05677C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. C. Ho, M. Lin, C. Pan, Optical-memory switching and oxygen detection based on the CVT grown γ- and α-phase In2Se3. Sens. Actuators B 209, 811–819 (2015). https://doi.org/10.1016/j.snb.2014.12.036

    Article  CAS  Google Scholar 

  3. R. Niranjan, N. Padha, Growth of γ-In2Se3 monolayer from multifaceted InxSey thin films via annealing and study of its physical properties. Mater. Chem. Phys. 257, 123823 (2021). https://doi.org/10.1016/j.matchemphys.2020.123823

    Article  CAS  Google Scholar 

  4. Chanchal, K. Jindal, A. Pandey, M. Tomar, P. Jha, Phase-defined growth of In2Se3 thin films using PLD technique for high-performance self-powered UV photodetector. Appl. Surf. Sci. 595, 153505 (2022). https://doi.org/10.1016/j.apsusc.2022.153505

    Article  CAS  Google Scholar 

  5. D. Sarkar, N. Das, M. Saikh, S. Roy, S. Paul, N. Hoque, R. Basu, S. Das, Elevating the performance of nanoporous bismuth selenide incorporated arch-shaped triboelectric nanogenerator by implementing piezo-tribo coupling effect: harvesting biomechanical energy and low scale energy sensing applications. Adv. Compos. Hybrid Mater. 6, 232 (2023). https://doi.org/10.1007/s42114-023-00807-0

    Article  CAS  Google Scholar 

  6. Z. Luo, L. Tong, Z. Lin, R. Amin, J. Ren, K. Khatib, C. Wang, Ferrum-doped nickel selenide @tri-nickel diselenide heterostructure electrocatalysts with efficient and stable water splitting for hydrogen and oxygen production. Adv. Compos. Hybrid Mater. 6, 159 (2023). https://doi.org/10.1007/s42114-023-00737-x

    Article  CAS  Google Scholar 

  7. S. Gupta, P. Sanap, G. Dilwale, R. Bulakhe, A. Jagadale, M. Deore, A. Bhalerao, C. Lokhande, Nanostructured zinc selenide (ZnSe) thin films deposited by various modes of electrodeposition for photovoltaic application. ES Energy Environ. (2023). https://doi.org/10.30919/esee910

    Article  Google Scholar 

  8. P. Hankare, M. Asabe, P. Chate, K. Rathod, Structural, optical and microscopic properties of chemically deposited In2Se3 thin films. J. Mater. Sci. Mater. Electron. 19, 1252–1257 (2008). https://doi.org/10.1007/s10854-008-9585-5

    Article  CAS  Google Scholar 

  9. O. Dilmi, M. Benaicha, Electrochemical synthesis of In2Se3 thin films from citrate bath. Structural, optical and morphological investigations. Russ. J. Electrochem. 57, 462–470 (2021). https://doi.org/10.1134/S1023193521050049

    Article  Google Scholar 

  10. Y. Jiang, Q. Wang, L. Han, X. Zhang, L. Jiang, Z. Wu, Y. Lai, D. Wang, F. Liu, Construction of In2Se3/MoS2 heterojunction as photoanode toward efficient photoelectrochemical water splitting. Chem. Eng. J. 358, 752–758 (2019). https://doi.org/10.1016/j.cej.2018.10.088

    Article  CAS  Google Scholar 

  11. Y. Hase, Y. Jadhav, R. Aher, V. Sharma, S. Shah, A. Punde, A. Waghmare, V. Doiphode, P. Shinde, S. Rahane, P. Vairale, B. Bade, M. Prasad, S. Rondiya, A. Rokade, S. Jadkar, Annealing temperature effect on structural and optoelectronic properties of γ-In2Se3 thin films towards highly stable photodetector applications. J. Mol. Struct. 1265, 133336 (2022). https://doi.org/10.1016/j.molstruc.2022.133336

    Article  CAS  Google Scholar 

  12. I. Mutlu, M. Zarbaliyev, F. Aslan, Indium selenide thin film preparation by sol-gel technique. J. Sol-Gel Sci. Technol. 43, 223–226 (2007). https://doi.org/10.1007/s10971-007-1573-3

    Article  CAS  Google Scholar 

  13. A. Yadav, S. Salunke, Photoelectrochemical properties of In2Se3 thin films: effect of substrate temperature. J. Alloys Compd. 640, 534–539 (2015). https://doi.org/10.1016/j.jallcom.2015.04.041

    Article  CAS  Google Scholar 

  14. R. Panda, R. Naik, N. Mishra, Low-temperature growth of γ phase in thermally deposited In2Se3 thin films. Phase Transitions 91, 862–871 (2018). https://doi.org/10.1080/01411594.2018.1508680

    Article  CAS  Google Scholar 

  15. T. Okamoto, A. Yamada, M. Konagai, Growth and characterization of In2Se3 epitaxial films by molecular beam epitaxy. J. Cryst. Growth 175–176, 1045–1050 (1997). https://doi.org/10.1016/S0022-0248(96)00984-0

    Article  Google Scholar 

  16. B. Thomas, T. Kutty, Formation of single-phase indium selenide thin films by elemental evaporation. Phys. Status Solidi 119, 127–138 (1990). https://doi.org/10.1002/pssa.2211190115

    Article  CAS  Google Scholar 

  17. R. Kulkarni, S. Rondiya, A. Pawbake, R. Waykar, A. Jadhavar, V. Jadkar, A. Bhorde, A. Date, H. Pathan, S. Jadkar, Structural and optical properties of CdTe thin films deposited using RF magnetron sputtering. Energy Procedia. 110, 188–195 (2017). https://doi.org/10.1016/j.egypro.2017.03.126

    Article  CAS  Google Scholar 

  18. A. Mantarci, M. Kundakçi, Power-dependent physical properties of GaN thin films deposited on sapphire substrates by RF magnetron sputtering. Bull. Mater. Sci. 42, 196 (2019). https://doi.org/10.1007/s12034-019-1883-4

    Article  CAS  Google Scholar 

  19. S. Yang, Y. Li, X. Wang, N. Huo, J. Xia, S. Li, J. Li, High performance few-layer GaS photodetector and its unique photo-response in different gas environments. Nanoscale 6, 2582–2587 (2014). https://doi.org/10.1039/C3NR05965K

    Article  CAS  PubMed  Google Scholar 

  20. M. Long, P. Wang, H. Fang, W. Hu, Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29, 1803807 (2019). https://doi.org/10.1002/adfm.201803807

    Article  CAS  Google Scholar 

  21. L. Singh, R. Singh, B. Zhang, S. Cheng, B. Kumar Kaushik, S. Kumar, LSPR based uric acid sensor using graphene oxide and gold nanoparticles functionalized tapered fiber. Opt. Fiber Technol. 53, 102043 (2019). https://doi.org/10.1016/j.yofte.2019.102043

    Article  CAS  Google Scholar 

  22. G. Konstantatos, E. Sargent, Nanostructured materials for photon detection. Nat. Nanotechnol. 5, 391–400 (2010). https://doi.org/10.1038/nnano.2010.78

    Article  CAS  PubMed  Google Scholar 

  23. K. Khan, A. Tareen, Q. Khan, M. Iqbal, H. Zhang, Z. Guo, Novel synthesis, properties and applications of emerging group VA two-dimensional monoelemental materials (2D-Xenes). Mater. Chem. Front. 5, 6333–6391 (2021). https://doi.org/10.1039/D1QM00629K

    Article  CAS  Google Scholar 

  24. F. Wang, X. Zou, M. Xu, H. Wang, H. Wang, H. Guo, J. Guo, P. Wang, M. Peng, Z. Wang, Y. Wang, J. Miao, F. Chen, J. Wang, X. Chen, A. Pan, C. Shan, L. Liao, W. Hu, Recent progress on electrical and optical manipulations of perovskite photodetectors. Adv. Sci. 8, 2100569 (2021). https://doi.org/10.1002/advs.202100569

    Article  CAS  Google Scholar 

  25. B. Wang, S. Zhong, P. Xu, H. Zhang, Recent development and advances in photodetectors based on two-dimensional topological insulators. J. Mater. Chem. C. 8, 15526–15574 (2020). https://doi.org/10.1039/D0TC03410J

    Article  CAS  Google Scholar 

  26. F. Wang, Y. Zhang, Y. Gao, P. Luo, J. Su, W. Han, K. Liu, H. Li, T. Zhai, 2D metal chalcogenides for IR photodetection. Small 15, 1901347 (2019). https://doi.org/10.1002/smll.201901347

    Article  CAS  Google Scholar 

  27. H. Algadi, J. Ren, A. Alqarni, A high-performance self-powered photodetector based on solution-processed nitrogen-doped graphene quantum dots/all-inorganic perovskite heterostructures. Adv. Compos. Hybrid Mater. 6, 98 (2023). https://doi.org/10.1007/s42114-023-00688-3

    Article  CAS  Google Scholar 

  28. H. Algadi, T. Das, J. Ren, H. Li, High-performance and stable hybrid photodetector based on a monolayer molybdenum disulfide (MoS2)/nitrogen-doped graphene quantum dots (NH2GQDs)/all-inorganic (CsPbBr3) perovskite nanocrystals triple junction. Adv. Compos. Hybrid Mater. 6, 56 (2023). https://doi.org/10.1007/s42114-023-00634-3

    Article  CAS  Google Scholar 

  29. H. Algadi, J. Ren, A. Alqarni, Solution-processed nitrogen-doped graphene quantum dots/perovskite composite heterojunction for boosting performance of anatase titanium dioxide (TiO2)-based UV photodetector. Adv. Compos. Hybrid Mater. 6, 86 (2023). https://doi.org/10.1007/s42114-023-00667-8

    Article  CAS  Google Scholar 

  30. S. Pawar, P. Lokhande, J. Kaur, R. Dubey, H. Pathan, Monochromatic photochemical deposition and characterization of ZnSe thin films. ES Energy Environ. (2022). https://doi.org/10.30919/esee8c685

    Article  Google Scholar 

  31. K. Benyahia, F. Djeffal, H. Ferhati, A. Bendjerad, A. Benhaya, A. Saidi, Self-powered photodetector with improved and broadband multispectral photoresponsivity based on ZnO-ZnS composite. J. Alloys Compd. 859, 158242 (2021). https://doi.org/10.1016/j.jallcom.2020.158242

    Article  CAS  Google Scholar 

  32. H. Ferhati, F. Djeffal, High-responsivity MSM solar-blind UV photodetector based on annealed ITO/Ag/ITO structure using RF sputtering. IEEE Sens. J. 19, 7942–7949 (2019). https://doi.org/10.1109/JSEN.2019.2920815

    Article  CAS  Google Scholar 

  33. M. Ito, O. Wada, Low dark current GaAs metal-semiconductor-metal (MSM) photodiodes using WSix contacts. IEEE J. Quantum Electron. 22, 1073–1077 (1986). https://doi.org/10.1109/JQE.1986.1073081

    Article  Google Scholar 

  34. J. Soole, H. Schumacher, InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications. IEEE J. Quantum Electron. 27, 737–752 (1991). https://doi.org/10.1109/3.81384

    Article  CAS  Google Scholar 

  35. D. Wuu, S. Hsu, R. Horng, Improvements of transparent electrode materials for GaN metal–semiconductor–metal photodetectors. J. Mater. Sci. Mater. Electron. 15, 793–796 (2004). https://doi.org/10.1023/B:JMSE.0000045301.37195.d7

    Article  CAS  Google Scholar 

  36. J. Seo, A. Ketterson, D. Ballegeer, K. Cheng, I. Adesida, X. Li, T. Gessert, A comparative study of metal-semiconductor-metal photodetectors on GaAs with indium-tin-oxide and Ti/Au electrodes. IEEE Photonics Technol. Lett. 4, 888–890 (1992). https://doi.org/10.1109/68.149898

    Article  Google Scholar 

  37. G. Yadav, V. Gupta, M. Tomar, Double Schottky metal–semiconductor–metal based GaN photodetectors with improved response using laser MBE technique. J. Mater. Res. 37, 457–469 (2022). https://doi.org/10.1557/s43578-021-00467-0

    Article  CAS  Google Scholar 

  38. W. Wohlmuth, I. Adesida, C. Caneau, Long-wavelength metal-semiconductor-metal photodetectors with transparent and opaque electrodes, in Photodetectors and Power Meters II, ed. by K. Muray, K.J. Kaufmann (1995), pp. 256–265. https://doi.org/10.1117/12.221406.

  39. J. Kim, H. Griem, R. Friedman, E. Chan, S. Ray, High-performance back-illuminated InGaAs/InAlAs MSM photodetector with a record responsivity of 0.96 A/W. IEEE Photonics Technol. Lett. 4, 1241–1244 (1992). https://doi.org/10.1109/68.166955

    Article  Google Scholar 

  40. H. Liu, Q. Wang, W. Sheng, X. Wang, K. Zhang, L. Du, J. Zhou, Humidity sensors with shielding electrode under interdigitated electrode. Sensors. 19, 659 (2019). https://doi.org/10.3390/s19030659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. P. Teerapanich, M. Myint, C. Joseph, G. Hornyak, J. Dutta, Development and improvement of carbon nanotube-based ammonia gas sensors using ink-jet printed interdigitated electrodes. IEEE Trans. Nanotechnol. 12, 255–262 (2013). https://doi.org/10.1109/TNANO.2013.2242203

    Article  CAS  Google Scholar 

  42. J. Jeong, J. Huh, J. Lee, H. Chu, J. Pak, B. Ju, Interdigitated electrode geometry effects on the performance of organic photoconductors for optical sensor applications. Thin Solid Films 518, 6343–6347 (2010). https://doi.org/10.1016/j.tsf.2010.01.056

    Article  CAS  Google Scholar 

  43. W. Laureyn, D. Nelis, P. Gerwen, K. Baert, L. Hermans, R. Magnée, J. Pireaux, G. Maes, Nanoscaled interdigitated titanium electrodes for impedimetric biosensing. Sens. Actuators B 68, 360–370 (2000). https://doi.org/10.1016/S0925-4005(00)00489-5

    Article  CAS  Google Scholar 

  44. S. MacKay, P. Hermansen, D. Wishart, J. Chen, Simulations of interdigitated electrode interactions with gold nanoparticles for impedance-based biosensing applications. Sensors. 15, 22192–22208 (2015). https://doi.org/10.3390/s150922192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Y. Hase, V. Sharma, M. Prasad, R. Aher, S. Shah, V. Doiphode, A. Waghmare, A. Punde, P. Shinde, S. Rahane, B. Bade, S. Ladhane, H. Pathan, S. Patole, S. Jadkar, Fabrication of γ-In2Se3-based photodetector using RF magnetron sputtering and investigations of its temperature-dependent properties. IEEE Sens. J. 23, 5681–5694 (2023). https://doi.org/10.1109/JSEN.2023.3239808

    Article  CAS  Google Scholar 

  46. N. Balakrishnan, E. Steer, E. Smith, Z. Kudrynskyi, Z. Kovalyuk, L. Eaves, A. Patanè, P. Beton, Epitaxial growth of γ-InSe and α, β, and γ-In2Se3 on ε-GaSe. 2D Mater. 5, 035026 (2018). https://doi.org/10.1088/2053-1583/aac479

    Article  CAS  Google Scholar 

  47. F. Faradev, N. Gasanly, B. Mavrin, N. Melnik, Raman scattering in some III-VI layer single crystals. Phys. Status Solidi 85, 381–386 (1978). https://doi.org/10.1002/pssb.2220850142

    Article  CAS  Google Scholar 

  48. Y. Zhang, M. Wang, K. Cao, C. Wu, C. Xie, Y. Zhou, L. Luo, Fabrication of a γ-In2Se3/Si heterostructure phototransistor for heart rate detection. J. Mater. Chem. C 9, 7888–7892 (2021). https://doi.org/10.1039/D1TC01837J

    Article  CAS  Google Scholar 

  49. Z. Chen, W. Tian, X. Zhang, Y. Wang, Effect of deposition parameters on surface roughness and consequent electromagnetic performance of capacitive RF MEMS switches: a review. J. Micromech. Microeng. 27, 113003 (2017). https://doi.org/10.1088/1361-6439/aa8917

    Article  CAS  Google Scholar 

  50. R. Waykar, A. Pawbake, R. Kulkarni, A. Jadhavar, A. Funde, V. Waman, H. Pathan, S. Jadkar, Influence of RF power on structural, morphology, electrical, composition and optical properties of Al-doped ZnO films deposited by RF magnetron sputtering. J. Mater. Sci. Mater. Electron. 27, 1134–1143 (2016). https://doi.org/10.1007/s10854-015-3862-x

    Article  CAS  Google Scholar 

  51. A. Lawal, A. Shaari, R. Ahmed, L. Taura, Investigation of excitonic states effects on optoelectronic properties of Sb2Se3 crystal for broadband photo-detector by highly accurate first-principles approach. Curr. Appl. Phys. 18, 567–575 (2018). https://doi.org/10.1016/j.cap.2018.02.008

    Article  Google Scholar 

  52. P. Kamat, N. Dimitrijevic, A. Nozik, Dynamic Burstein-Moss shift in semiconductor colloids. J. Phys. Chem. 93, 2873–2875 (1989). https://doi.org/10.1021/j100345a003

    Article  CAS  Google Scholar 

  53. D. Kim, D. Hwang, C. Son, Y. Son, Effect of sputtering power on the structure and optical properties of radio frequency sputtered-ZnS thin film. J. Nanosci. Nanotechnol. 17, 5046–5049 (2017). https://doi.org/10.1166/jnn.2017.14277

    Article  CAS  Google Scholar 

  54. A. Abdulrahman, A. Barzinjy, S. Hamad, M. Almessiere, Impact of radio frequency plasma power on the structure, crystallinity, dislocation density, and the energy band gap of ZnO nanostructure. ACS Omega 6, 31605–31614 (2021). https://doi.org/10.1021/acsomega.1c04105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. J. Shi, C. Dong, W. Dai, J. Wu, Y. Chen, R. Zhan, The influence of RF power on the electrical properties of sputtered amorphous In-Ga-Zn-O thin films and devices. J. Semicond. 34, 084003 (2013). https://doi.org/10.1088/1674-4926/34/8/084003

    Article  CAS  Google Scholar 

  56. A. Bhorde, S. Nair, H. Borate, S. Pandharkar, R. Aher, A. Punde, A. Waghmare, P. Shinde, P. Vairale, R. Waykar, V. Doiphode, V. Jadkar, Y. Hase, S. Rondiya, N. Patil, M. Prasad, S. Jadkar, Highly stable and Pb-free bismuth-based perovskites for photodetector applications. New J. Chem. 44, 11282–11290 (2020). https://doi.org/10.1039/D0NJ01806F

    Article  CAS  Google Scholar 

  57. R. Aher, A. Bhorde, S. Nair, H. Borate, S. Pandharkar, D. Naik, P. Vairale, S. Karpe, D. Late, M. Prasad, S. Jadkar, Solvothermal growth of PbBi2Se4 nano-flowers: a material for humidity sensor and photodetector applications. Phys. Status Solidi 216, 1900065 (2019). https://doi.org/10.1002/pssa.201900065

    Article  CAS  Google Scholar 

  58. J. Yao, Z. Zheng, J. Shao, G. Yang, Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition. Nanoscale 7, 14974–14981 (2015). https://doi.org/10.1039/C5NR03361F

    Article  CAS  PubMed  Google Scholar 

  59. C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, Q. Bao, Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Sci. Rep. 5, 11830 (2015). https://doi.org/10.1038/srep11830

    Article  PubMed  PubMed Central  Google Scholar 

  60. A. Pawbake, R. Waykar, D. Late, S. Jadkar, Highly transparent wafer-scale synthesis of crystalline WS2 nanoparticle thin film for photodetector and humidity-sensing applications. ACS Appl. Mater. Interfaces 8, 3359–3365 (2016). https://doi.org/10.1021/acsami.5b11325

    Article  CAS  PubMed  Google Scholar 

  61. R. Mech, S. Solanke, N. Mohta, M. Rangarajan, D. Nath, In2Se3 Visible/Near-IR photodetector with observation of band-edge in spectral response. IEEE Photonics Technol. Lett. 31, 905–908 (2019). https://doi.org/10.1109/LPT.2019.2912912

    Article  CAS  Google Scholar 

  62. P. Hou, C. Wang, Y. Chen, Q. Zhong, Y. Zhang, H. Guo, X. Zhong, J. Wang, X. Ouyang, Ionization effect and displacement effect induced photoresponsivity degradation on α-In2Se3 based transistors for photodetectors. Radiat. Phys. Chem. 174, 108969 (2020). https://doi.org/10.1016/j.radphyschem.2020.108969

    Article  CAS  Google Scholar 

  63. M. Anandan, H. Hsieh, F. Liu, C. Chen, K. Lee, L. Chao, C. Ho, R. Chen, High-responsivity broadband sensing and photoconduction mechanism in direct-Gap α-In2Se3 nanosheet photodetectors. Nanotechnology 31, 465201 (2020). https://doi.org/10.1088/1361-6528/abac7e

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Yogesh Hase, Ashish Waghmare, Shruti Shah, Pratibha Shinde, Vidya Doiphode, Somnath Ladhane, and Bharat Bade are grateful to the Ministry of New and Renewable Energy (MNRE), Government of India, New Delhi, for the National Renewable Energy (NRE) fellowship and financial assistance. Swati Rahane is thankful for the research fellowship to the Chhatrapati Shahu Maharaj Research, Training and Human Development Institute (SARTHI), Government of Maharashtra. Dhanashri Kale is grateful to the Department of Science and Technology, Government of India, New Delhi, for the financial support under the Innovation in Science Pursuit for Inspired Research (INSPIRE) fellowship. Finally, Sandesh Jadkar and Mohit Prasad thank the University Grants Commission (UPE program), New Delhi, and the Indo-French Centre for the Promotion of Advanced Research-CEFIPRA, Department of Science and Technology, New Delhi, for special financial support.

Author information

Authors and Affiliations

Authors

Contributions

Yogesh Hase: Methodology, Conceptualization, Validation, Formal analysis, Investigation; Mohit Prasad: Formal analysis, Investigation, Data curation, Writing-Review, and Editing; Shruti Shah: Methodology, Validation, Formal analysis, Investigation; Vidya Doiphode: Data curation, Formal analysis, Investigation;

Ashish Waghmare: Methodology, Formal analysis, Investigation, Data curation; Ashvini Punde: Methodology, Conceptualization, Validation, Investigation; Pratibha Shinde: Conceptualization, Validation, Formal analysis, Investigation; Swati Rahane: Data curation, Formal analysis, Investigation; Bharat Bade: Methodology, Validation, Formal analysis, Investigation; Somnath Ladhane: Data curation, Formal analysis, Investigation; Dhanashri Kale: Methodology, Formal analysis, Investigation; Sachin Rondiya: Methodology, Conceptualization, Validation, Investigation; Sandesh Jadkar: Visualization, Writing-Review, Editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to Sandesh Jadkar.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hase, Y., Prasad, M., Shah, S. et al. Enhanced performance of γ-In2Se3 photodetector on ITO-coated interdigital electrodes fabricated via RF-magnetron sputtering. J Mater Sci: Mater Electron 35, 859 (2024). https://doi.org/10.1007/s10854-024-12590-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12590-9

Navigation