Skip to main content
Log in

Optimization, Prediction, and Characterization of Electroless Ni-W-P-nanoTiO2 Composite Coatings on Pipeline Steel

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present research reports an experimental study of Ni-W-P-nanoTiO2 composite coatings deposited on API X60 low-carbon steel by the electroless method. Electroless bath parameters are optimized to attain maximum deposition rate using the Taguchi design (L9 orthogonal array). Analysis of variance was performed to find out the significance of individual parameters. A confirmation test was performed at the initial and optimal parameter combination obtained from the Taguchi analysis. In addition, the applicability of artificial neural network (ANN) was also examined for the prediction of deposition rate. An ANN 4-7-1 network accurately predicted the deposition rate with a correlation coefficient (R2) valued at 0.9820. Atomic force microscopy and field emission scanning electron microscopy were used to characterize the surface morphology, and energy-dispersive spectroscopy, and X-ray diffraction were used for compositional and phase study of the coatings. The corrosion behavior of nanocomposite coatings was tested in 3.5 wt% NaCl solution by potentiodynamic polarization. The optimum combination was achieved with 24 g/L of reducing agent content, 10 g/L of TiO2 nanoparticles content, bath pH of 9, and a temperature of 80 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sudagar, J.; Lian, J.; Sha, W.: Electroless nickel, alloy, composite and nano coatings—a critical review. J. Alloys Compd. 571, 183–204 (2013). https://doi.org/10.1016/j.jallcom.2013.03.107

    Article  CAS  Google Scholar 

  2. Brenner, A.; Riddell, G.E.: Nickel Plating on Steel by Chemical reduction. Plat. Surf. Finish. 85, 54–56 (1998). https://doi.org/10.6028/jres.037.019

    Article  Google Scholar 

  3. Oraon, B.; Majumdar, G.; Ghosh, B.: Improving hardness of electroless Ni-B coatings using optimized deposition conditions and annealing. Mater. Des. 29, 1412–1418 (2008). https://doi.org/10.1016/j.matdes.2007.09.005

    Article  CAS  Google Scholar 

  4. Sahoo, P.: Wear behaviour of electroless Ni-P coatings and optimization of process parameters using Taguchi method. Mater. Des. 30, 1341–1349 (2009). https://doi.org/10.1016/j.matdes.2008.06.031

    Article  CAS  Google Scholar 

  5. Samanta, S.; Singh, C.; Banerjee, A.; Mondal, K.; Dutta, M.; Singh, S.B.: Development of amorphous Ni-P coating over API X70 steel for hydrogen barrier application. Surf. Coat. Technol. 403, 126356 (2020). https://doi.org/10.1016/j.surfcoat.2020.126356

    Article  CAS  Google Scholar 

  6. Fayyad, E.M.; Abdullah, A.M.; Hassan, M.K.; Mohamed, A.M.; Jarjoura, G.; Farhat, Z.: Recent advances in electroless-plated Ni-P and its composites for erosion and corrosion applications: a review. Emerg. Mater. 1, 3–24 (2018). https://doi.org/10.1007/s42247-018-0010-4

    Article  CAS  Google Scholar 

  7. Balaraju, J.N.; Millath Jahan, S.; Anandan, C.; Rajam, K.S.: Studies on electroless Ni-W-P and Ni-W-Cu-P alloy coatings using chloride-based bath. Surf. Coat. Technol. 200, 4885–4890 (2006). https://doi.org/10.1016/j.surfcoat.2005.04.053

    Article  CAS  Google Scholar 

  8. Liao, Y.; Zhang, S.T.; Dryfe, R.: A study of corrosion performance of electroless Ni-P and Ni-W-P coatings on AZ91D magnesium alloy. Materwiss. Werksttech. 42, 833–837 (2011). https://doi.org/10.1002/mawe.201100850

    Article  CAS  Google Scholar 

  9. Tsai, Y.Y.; Wu, F.B.; Chen, Y.I.; Peng, P.J.; Duh, J.G.; Tsai, S.Y.: Thermal stability and mechanical properties of Ni-W-P electroless deposits. Surf. Coat. Technol. 146, 146–147 (2001). https://doi.org/10.1016/s0257-8972(01)01462-1

    Article  Google Scholar 

  10. Zarebidaki, A.; Allahkaram, S.R.: Effect of surfactant on the fabrication and characterization of Ni-P-CNT composite coatings. J. Alloys Compd. 509, 1836–1840 (2011). https://doi.org/10.1016/j.jallcom.2010.10.057

    Article  CAS  Google Scholar 

  11. Mazaheri, H.; Allahkaram, S.R.: Deposition, characterization and electrochemical evaluation of Ni-P-nano diamond composite coatings. Appl. Surf. Sci. 258, 4574–4580 (2012). https://doi.org/10.1016/j.apsusc.2012.01.031

    Article  CAS  ADS  Google Scholar 

  12. MacLean, M.; Farhat, Z.; Jarjoura, G.; Fayyad, E.; Abdullah, A.; Hassan, M.: Fabrication and investigation of the scratch and indentation behaviour of new generation Ni-P-nano-NiTi composite coating for oil and gas pipelines. Wear 426–427, 265–276 (2019). https://doi.org/10.1016/j.wear.2019.01.058

    Article  CAS  Google Scholar 

  13. Fayyad, E.M.; Abdullah, A.M.; Mohamed, A.M.A.; Jarjoura, G.; Farhat, Z.; Hassan, M.K.: Effect of electroless bath composition on the mechanical, chemical, and electrochemical properties of new NiP–C 3 N 4 nanocomposite coatings. Surf. Coat. Technol. 362, 239–251 (2019). https://doi.org/10.1016/j.surfcoat.2019.01.087

    Article  CAS  Google Scholar 

  14. Rana, A.R.K.; Farhat, Z.: Preparation and tribological characterization of graphene incorporated electroless Ni-P composite coatings. Surf. Coat. Technol. 369, 334–346 (2019). https://doi.org/10.1016/j.surfcoat.2019.04.043

    Article  CAS  Google Scholar 

  15. Oliveira, M.; Correa, O.V.; Silva, R.M.P.; Lima, N.B.L.; Oliveira, J.T.D.; de Oliveira, L.A.; Antunes, R.A.: Activity of electroless Ni– P-multiwalled carbon nanotube composite coatings on pipeline steel. Metals 11, 11060982 (2021). https://doi.org/10.3390/met11060982

    Article  CAS  Google Scholar 

  16. Allahkaram, S.R.; Salmi, S.; Tohidlou, E.: AN investigation on effects of Tio2 nano-particles incorporated in electroless NiP coatings’ properties. Int. J. Mod. Phys. Conf. Ser. 05, 833–840 (2012). https://doi.org/10.1142/s2010194512002814

    Article  CAS  Google Scholar 

  17. Abdel Aal, A.; Hassan, H.B.: Electrodeposited nanocomposite coatings for fuel cell application. J. Alloys Compd. 477, 652–656 (2009). https://doi.org/10.1016/j.jallcom.2008.10.116

    Article  CAS  Google Scholar 

  18. Erdemir, F.; Varol, T.; Çanakçı, A.: Synthesis of SiC nanoparticles by central composite design response surface methodology directed mechanical milling. Micro Nano Lett. 15(3), 187–190 (2020). https://doi.org/10.1049/mnl.2019.0468

    Article  CAS  Google Scholar 

  19. Seikh, A.H.; Mandal, B.B.; Sarkar, A.; Baig, M.; Alharthi, N.; Alzahrani, B.: Application of response surface methodology for prediction and modeling of surface roughness in ball end milling of OFHC copper. Int. J. Mech. Mater. Eng. (2019). https://doi.org/10.1186/s40712-019-0099-0

    Article  Google Scholar 

  20. Erdemir, F.: Study on particle size and X-ray peak area ratios in high energy ball milling and optimization of the milling parameters using response surface method. Measurement 112, 53–60 (2017). https://doi.org/10.1016/j.measurement.2017.08.021

    Article  ADS  Google Scholar 

  21. Canakci, A.; Erdemir, F.; Varol, T.; Patir, A.: Determining the effect of process parameters on particle size in mechanical milling using the Taguchi method : Measurement and analysis. Measurement 46, 3532–3540 (2024). https://doi.org/10.1016/j.measurement.2013.06.035

    Article  ADS  Google Scholar 

  22. Tamilarasan, T.R.; Sathish Kumar, R.; Rajendran, R.; Rajagopal, G.: Optimization of electroless Ni-P-nano-TiO2 coating parameters using Taguchi method for corrosion performance. Appl. Mech. Mater. 813–814, 95–100 (2015). https://doi.org/10.4028/www.scientific.net/amm.813-814.95

    Article  Google Scholar 

  23. Selvan, R.A.S.; Thakur, D.G.; Seeman, M.; Muraliraja, R.; Ansari, M.I.: Modelling and optimisation of ENi-P-TiO2 coatings synthesised with Zwitterionic surfactant on naval grade AH36 Steel. Sadhana Acad. Proc. Eng. Sci. (2022). https://doi.org/10.1007/s12046-022-01890-7

    Article  Google Scholar 

  24. De, J.; Banerjee, T.; Sen, R.S.; Oraon, B.; Majumdar, G.: Multi-objective optimization of electroless ternary nickel–cobalt–phosphorous coating using non-dominant sorting genetic algorithm-II. Eng. Sci. Technol. Int. J. 19, 1526–1533 (2016). https://doi.org/10.1016/j.jestch.2016.04.011

    Article  Google Scholar 

  25. Kumar Srivastwa, A.; Sarkar, S.; De, J.; Majumdar, G.: Parametric optimization of electroless Ni-P-CNT coating using genetic algorithm to maximize the rate of deposition. Mater. Today Proc. 66, 3769–3774 (2022). https://doi.org/10.1016/j.matpr.2022.06.106

    Article  CAS  Google Scholar 

  26. Rauta, C.S.; Majumdar, G.; Sarkar, S.: Parametric optimization of microhardness of electroless Ni-Zn-Cu-P coating using Taguchi design and artificial neural network. JOM (2022). https://doi.org/10.1007/s11837-022-05489-5

    Article  Google Scholar 

  27. Rubio-Ramirez, C.; Giarollo, D.F.; Mazzaferro, J.E.; Mazzaferro, C.P.: Prediction of angular distortion due GMAW process of thin-sheets Hardox 450® steel by numerical model and artificial neural network. J. Manuf. Process. 68, 1202–1213 (2021). https://doi.org/10.1016/j.jmapro.2021.06.045

    Article  Google Scholar 

  28. Britto, A.S.F.; Raj, R.E.; Mabel, M.C.: Prediction and optimization of mechanical strength of diffusion bonds using integrated ANN-GA approach with process variables and metallographic characteristics. J. Manuf. Process. 32, 828–838 (2018). https://doi.org/10.1016/j.jmapro.2018.04.015

    Article  Google Scholar 

  29. Alafaghani, A.; Ablat, M.A.; Abedi, H.; Qattawi, A.: Modeling the influence of fused filament fabrication processing parameters on the mechanical properties of ABS parts. J. Manuf. Process. 71, 711–723 (2021). https://doi.org/10.1016/j.jmapro.2021.09.057

    Article  Google Scholar 

  30. Ray, S.: Parametric optimization and prediction of abrasion wear behavior of marble-particle-filled glass-epoxy composites using Taguchi design integrated with neural network. JOM 73, 2050–2059 (2021). https://doi.org/10.1007/s11837-021-04698-8

    Article  ADS  Google Scholar 

  31. Ulapane, S.B.; Kamathewatta, N.J.B.; Ashberry, H.M.; Berrie, C.L.: Controlled electroless deposition of noble metals on silicon substrates using self-assembled monolayers as molecular resists to generate nanopatterned surfaces for electronics and plasmonics. ACS Appl. Nano Mater. (2019). https://doi.org/10.1021/acsanm.9b01641

    Article  Google Scholar 

  32. Kumar, V.; Baran Mandal, B.; Oraon, B.: Synthesis and characterization of electroless Ni–W-Ce-P coating on AISI 1010 substrate. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.03.267

    Article  PubMed  PubMed Central  Google Scholar 

  33. Davoodi, D.; Hossein, A.; Mahmoud, S.; Vaghefi, M.; Omidi, M.; Bakhsheshi-Rad, H.R.: International Journal of Pressure Vessels and Piping Deposition of electroless Ni – Cu – P coatings on L80 steel substrates and the effects of coatings thickness and heat treatment on the corrosion resistance. Int. J. Press. Vessel. Pip. 200, 104823 (2022). https://doi.org/10.1016/j.ijpvp.2022.104823

    Article  CAS  Google Scholar 

  34. Taguchi, G.; Organization, A.P.: Introduction to quality engineering: designing quality into products and processes. Asian Productivity Organization (1986)

    Google Scholar 

  35. Montgomery, D.C.: Design and analysis of experiments. Wiley (2008)

    Google Scholar 

  36. Hu, W.; Ma, Z.; Ji, S.; Qi, S.; Chen, M.; Jiang, W.: Improving the mechanical property of dissimilar Al/Mg hybrid friction stir welding joint by PIO-ANN. J. Mater. Sci. Technol. 53, 41–52 (2020). https://doi.org/10.1016/j.jmst.2020.01.069

    Article  CAS  Google Scholar 

  37. Kim, S.; Park, M.; Kim, H.: Systematic approach for the evaluation of the optimal fabrication conditions of a H 2 S gas sensor with Taguchi method. Sens. Act. B Chem. 102, 253–260 (2004). https://doi.org/10.1016/j.snb.2004.04.029

    Article  CAS  Google Scholar 

  38. Ayoubi-feiz, B.; Soleimani, D.; Sheydaei, M.: Taguchi method for optimization of immobilized Dy 2 O 3/graphite / TiO 2/Ti nanocomposite preparation and application in visible light photoelectrocatalysis process. J. Electroanal. Chem. 849, 113377 (2019). https://doi.org/10.1016/j.jelechem.2019.113377

    Article  CAS  Google Scholar 

  39. Daneshvar, N.; Khataee, A.R.; Rasoulifard, M.H.; Pourhassan, M.: Biodegradation of dye solution containing malachite green : optimization of effective parameters using Taguchi method. J. Hazard. Mater. 143, 214–219 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.016

    Article  CAS  PubMed  Google Scholar 

  40. Chen, W.; Gao, W.; He, Y.: A novel electroless plating of Ni-P-TiO2 nano-composite coatings. Surf. Coat. Technol. 204, 2493–2498 (2010). https://doi.org/10.1016/j.surfcoat.2010.01.032

    Article  CAS  Google Scholar 

  41. Tamilarasan, T.R.; Rajendran, R.; Rajagopal, G.; Sudagar, J.: Effect of surfactants on the coating properties and corrosion behaviour of Ni-P-nano-TiO2 coatings. Surf. Coat. Technol. 276, 320–326 (2015). https://doi.org/10.1016/j.surfcoat.2015.07.008

    Article  CAS  Google Scholar 

  42. Kreye, H.; Isheim, D.; Kirchheim, R.; Mu, F.: Nanocrystalline Ni ± 3.6 at.% p and its transformation sequence studied by atom- probe field-ion microscopy. Acta Mater. 48, 933–941 (2000)

    Article  ADS  Google Scholar 

  43. Shu, X.; Wang, Y.; Lu, X.; Liu, C.; Gao, W.: Surface & coatings technology parameter optimization for electroless Ni – W – P coating. Surf. Coat. Technol. 276, 195–201 (2015). https://doi.org/10.1016/j.surfcoat.2015.06.068

    Article  CAS  Google Scholar 

  44. Smilgies, D.: research papers Scherrer grain-size analysis adapted to grazing- incidence scattering with area detectors research papers. J. Appl. Crystallogr. 42, 1030–1034 (2009). https://doi.org/10.1107/S0021889809040126

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. Novakovic, J.; Vassiliou, P.; Samara, K.; Argyropoulos, T.: Electroless NiP-TiO2 composite coatings: their production and properties. Surf. Coat. Technol. 201, 895–901 (2006). https://doi.org/10.1016/j.surfcoat.2006.01.005

    Article  CAS  Google Scholar 

  46. Shoeib, M.A.; Kamel, M.M.; Rashwan, S.M.; Hafez, O.M.: Corrosion behavior of electroless Ni-P/TiO2 nanocomposite coatings. Surf. Interface Anal. 47, 672–680 (2015). https://doi.org/10.1002/sia.5764

    Article  CAS  Google Scholar 

  47. Calderón, J.A.; Jiménez, J.P.; Zuleta, A.A.: Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH)2-ceramic nanoparticle composite coatings. Surf. Coat. Technol. 304, 167–178 (2016). https://doi.org/10.1016/j.surfcoat.2016.04.063

    Article  CAS  Google Scholar 

  48. Shozib, I.A.; Ahmad, A.; Abdul-rani, A.M.; Beheshti, M.: A review on the corrosion resistance of electroless Ni-P based composite coatings and electrochemical corrosion testing methods. Corros. Rev. 40, 1–37 (2022)

    Article  CAS  Google Scholar 

  49. Uysal, M.: Electroless codeposition of Ni-P composite coatings : effects of graphene and TiO 2 on the morphology, corrosion, and tribological properties. Metall. Mater. Trans. A 50, 2331–2341 (2019). https://doi.org/10.1007/s11661-019-05161-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Mechanical Engineering, Centre of Excellence (COE) under the TEQIP Phase-III program for providing a scholarship scheme that helped in completing this research work. The authors also acknowledge Dr. Bharati Tudu, Associate Professor, Department of Physics, Jadavpur University, Kolkata (W.B), India, for the AFM testing facility. We also would like to acknowledge Vedam India Metallurgical Research Laboratory Pvt. Ltd., Kolkata (W.B), India, for helping in the corrosion testing facility.

Author information

Authors and Affiliations

Authors

Contributions

BBM contributed to Conceptualization, Methodology, Visualization, Analysis and Investigation, Writing—Original draft, Review & Editing. VK contributed to Writing—review & editing. BO contributed to Supervision, Resources, and Validation.

Corresponding author

Correspondence to Biplab Baran Mandal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, B.B., Kumar, V. & Oraon, B. Optimization, Prediction, and Characterization of Electroless Ni-W-P-nanoTiO2 Composite Coatings on Pipeline Steel. Arab J Sci Eng 49, 1643–1657 (2024). https://doi.org/10.1007/s13369-023-07928-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07928-0

Keywords

Navigation