Skip to main content
Log in

A Study on Crystalline Structure and Li+-Ion Diffusion Coefficient of LiNixFe1−xPO4/C Cathode Material

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This work focused on synthesising Ni-doped LiNixFe1−xPO4/C (x = 0, 0.05 and 0.1) cathode materials by hydrothermal method. The crystalline structure and morphology of the synthesised materials were investigated through x-ray diffraction, Raman scattering spectroscopy, thermal gravimetric analysis, and scanning electron microscopy. Their electrochemical performance was analysed by cyclic voltammetry and galvanostatic cycling test. The highest initial capacity of 170.3 mAh/g was achieved for LiNi0.1Fe0.9PO4/C. It also maintained 99.68% of its initial capacity for 120 cycles, with a Li+-ion diffusion coefficient of 1.12 × 10−12 cm2/s compared with that (9.21 × 10−13 cm2/s) of LiNi0.05Fe0.95PO4/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goodenough, J.B.: Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 7, 14–18 (2014)

    Article  Google Scholar 

  2. Yu, F.; Ge, S.; Li, B.; Sun, G.; Mei, R.; Zheng, L.: Three-dimensional porous LiFePO4: design, architectures and high performance for lithium ion batteries. Curr. Inorg. Chem 2, 194–212 (2012)

    Article  Google Scholar 

  3. Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004)

    Article  Google Scholar 

  4. Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M.: A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013)

    Article  Google Scholar 

  5. Fergus, J.W.: Recent developments in cathode materials for lithium ion batteries. J. Power Sources 195, 939–954 (2010)

    Article  Google Scholar 

  6. Periasamy, P.; Ramesh Babu, B.; Thirunakaran, R.; Kalaiselvi, N.; Prem Kumar, T.; Renganathan, N.G.; Raghavan, M.; Muniyandi, N.: Solid-state synthesis and characterization of LiCoO2 and LiNiyCo1−y solid solutions. Bull. Mater. Sci. 23, 345–348 (2000)

    Article  Google Scholar 

  7. Rodrigues, S.; Munichandraiah, N.; Shukla, A.K.: Novel solution-combustion synthesis of LiCoO2 and its characterization as cathode material for lithium-ion cells. J. Power Sources 102, 322–325 (2001)

    Article  Google Scholar 

  8. Xu, G.; Liu, Z.; Zhang, C.; Cui, G.; Chen, L.: Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures. J. Mater. Chem. A 3, 4092–4123 (2015)

    Article  Google Scholar 

  9. Yi, T.F.; Zhu, Y.R.; Zhu, X.D.; Shu, J.; Yue, C.B.; Zhou, A.N.: Erratum to: A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery. Ionics 15, 785–785 (2009)

    Article  Google Scholar 

  10. Gong, Z.; Yang, Y.: Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ. Sci. 4, 3223 (2011)

    Article  Google Scholar 

  11. Padhi, A.K.; Nanjundaswamy, K.S.; Masquelier, C.; Okada, S.; Goodenough, J.B.: Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 144, 1609–1613 (1997)

    Article  Google Scholar 

  12. Yuan, L.X.; Wang, Z.H.; Zhang, W.X.; Hu, X.L.; Chen, J.T.; Huang, Y.H.; Goodenough, J.B.: Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci. 4, 269–284 (2011)

    Article  Google Scholar 

  13. Wang, Y.; He, P.; Zhou, H.: Olivine LiFePO4: development and future. Energy Environ. Sci. 4, 805–817 (2011)

    Article  Google Scholar 

  14. Wang, J.; Sun, X.: Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ. Sci. 8, 1110–1138 (2015)

    Article  Google Scholar 

  15. Amin, R.; Maier, J.; Balaya, P.; Chen, D.P.; Lin, C.T.: Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique. Solid State Ionics 179, 1683–1687 (2008)

    Article  Google Scholar 

  16. Meethong, N.; Kao, Y.H.; Speakman, S.A.; Chiang, Y.M.: Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties. Adv. Funct. Mater. 19, 1060–1070 (2009)

    Article  Google Scholar 

  17. Li, W.; Song, B.; Manthiram, A.: High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 46, 3006–3059 (2017)

    Article  Google Scholar 

  18. Churikov, A.V.; Ivanishchev, A.V.; Ivanishcheva, I.A.; Sycheva, V.O.; Khasanova, N.R.; Antipov, E.V.: Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques. Electrochim. Acta 55, 2939–2950 (2010)

    Article  Google Scholar 

  19. Myung, S.T.; Komaba, S.; Hirosaki, N.; Yashiro, H.; Kumagai, N.: Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material. Electrochim. Acta 49, 4213–4222 (2004)

    Article  Google Scholar 

  20. Liu, H.; Xie, J.; Wang, K.: Synthesis and characterization of nano-LiFePO4/carbon composite cathodes from 2-methoxyethanol–water system. J. Alloys Compd. 459, 521–525 (2008)

    Article  Google Scholar 

  21. Lee, J.; Teja, A.S.: Synthesis of LiFePO4 micro and nanoparticles in supercritical water. Mater. Lett. 60, 2105–2109 (2006)

    Article  Google Scholar 

  22. Dominko, R.; Gaberscek, M.; Bele, M.; Mihailovic, D.; Jamnik, J.: Carbon nanocoatings on active materials for Li-ion batteries. J. Eur. Ceram. Soc. 27, 909–913 (2007)

    Article  Google Scholar 

  23. Dominko, R.; Gaberscek, M.; Drofenik, J.; Bele, M.; Pejovnik, S.; Jamnik, J.: The role of carbon black distribution in cathodes for Li ion batteries. J. Power Sources 119–121, 770–773 (2003)

    Article  Google Scholar 

  24. Shin, H.C.; Cho, W.I.; Jang, H.: Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black. Electrochim. Acta 52, 1472–1476 (2006)

    Article  Google Scholar 

  25. Lai, C.; Xu, Q.; Ge, H.; Zhou, G.; Xie, J.: Improved electrochemical performance of LiFePO4/C for lithium-ion batteries with two kinds of carbon sources. Solid State Ionics 179, 1736–1739 (2008)

    Article  Google Scholar 

  26. Roberts, M.R.; Vitins, G.; Owen, J.R.: High-throughput studies of Li1−xMgx/2FePO4 and LiFe1−yMgyPO4 and the effect of carbon coating. J. Power Sources 179, 754–762 (2008)

    Article  Google Scholar 

  27. Ou, X.Q.; Liang, G.C.; Liang, J.S.; Xu, S.Z.; Zhao, X.: LiFePO4 doped with magnesium prepared by hydrothermal reaction in glucose solution. Chin. Chem. Lett. 19, 345–349 (2008)

    Article  Google Scholar 

  28. Shanmukaraj, D.; Wang, G.X.; Murugan, R.; Liu, H.K.: Electrochemical studies on LiFe1−xCoxPO4/carbon composite cathode materials synthesized by citrate gel technique for lithium-ion batteries. Mater. Sci. Eng. B 149, 93–98 (2008)

    Article  Google Scholar 

  29. Park, K.S.; Son, J.T.; Chung, H.T.; Kim, S.J.; Lee, C.H.; Kang, K.T.; Kim, H.G.: Surface modification by silver coating for improving electrochemical properties of LiFePO4. Solid State Commun. 129, 311–314 (2004)

    Article  Google Scholar 

  30. Mi, C.H.; Cao, Y.X.; Zhang, X.G.; Zhao, X.B.; Li, H.L.: Synthesis and characterization of LiFePO4/(Ag+C) composite cathodes with nano-carbon webs. Powder Technol. 181, 301–306 (2008)

    Article  Google Scholar 

  31. Fu, L.J.; Liu, H.; Li, C.; Wu, Y.P.; Rahm, E.; Holze, R.; Wu, H.Q.: Surface modifications of electrode materials for lithium ion batteries. Solid State Sci. 8, 113–128 (2006)

    Article  Google Scholar 

  32. Chen, T.C.; Lin, R.H.: Effects of metal doping on properties of LiFePO4 cathode material by first-principle calculation. Int. J. Mater. Eng. 5, 121–124 (2015)

    Google Scholar 

  33. Örnek, A.; Bulut, E.; Can, M.; Özacar, M.: Characteristics of nanosized LiNixFe1−xPO4/C (x = 0.00–0.20) composite material prepared via sol–gel-assisted carbothermal reduction method. J. Solid State Electrochem. 17, 3101–3107 (2013)

    Article  Google Scholar 

  34. Liu, Q.; Liu, Z.; Xiao, G.; Liao, S.: Enhancement of capacity at high charge/discharge rate and cyclic stability of LiFePO4/C by nickel doping. Ionics 19, 445–450 (2012)

    Article  Google Scholar 

  35. Shenouda, A.Y.; Liu, H.K.: Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode. J. Alloys Compd. 477, 498–503 (2009)

    Article  Google Scholar 

  36. Yesibolati, N.; Umirov, N.; Koishybay, A.; Omarova, M.; Kurmanbayeva, I.; Zhang, Y.; Zhao, Y.; Bakenov, Z.: High performance Zn/LiFePO4 aqueous rechargeable battery for large scale applications. Electrochim. Acta 152, 505–511 (2015)

    Article  Google Scholar 

  37. Huynh, L.T.; Tran, T.T.; Nguyen, H.H.; Nguyen, T.T.; Tran, V.M.; Grag, A.; Le, M.L.: Carbon-coated LiFePO4–carbon nanotube electrodes for high-rate Li-ion battery. J. Solid State Electrochem. 22, 2247–2254 (2018)

    Article  Google Scholar 

  38. Zhang, T.; Kamlah, M.: Phase-field modeling of the particle size and average concentration dependent miscibility gap in nanoparticles of LixMn2O4, LixFePO4, and NaxFePO4 during insertion. Electrochim. Acta 298, 31–42 (2019)

    Article  Google Scholar 

  39. Zhang, T.; Kamlah, M.: Microstructure evolution and intermediate phase-induced varying solubility limits and stress reduction behavior in sodium ion batteries particles of NaxFePO4 (0 < x < 1). J. Power Sources 483, 229187 (2021)

    Article  Google Scholar 

  40. Roh, J.-S.: Structural study of the activated carbon fiber using laser Raman spectroscopy. Carbon Lett. 9, 127–130 (2008)

    Article  Google Scholar 

  41. Tommasini, M.; Castiglioni, C.; Zerbi, G.; Barbon, A.; Brustolon, M.: A joint Raman and EPR spectroscopic study on ball-milled nanographites. Chem. Phys. Lett. 516, 220–224 (2011)

    Article  Google Scholar 

  42. Ferrari, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    Article  Google Scholar 

  43. Lu, W.; Liu, M.; Miao, L.; Zhu, D.; Wang, X.; Duan, H.; Wang, Z.; Li, L.; Xu, Z.; Gan, L.; Chen, L.: Nitrogen-containing ultramicroporous carbon nanospheres for high performance supercapacitor electrodes. Electrochim. Acta 205, 132–141 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Author C.D. Huynh received research grants from the Vietnam National Foundation for Science and Technology Development (NAFOSTED) (Grant Number 104.03-2017.349).

Funding

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 104.03–2017.349.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinh D. Huynh.

Ethics declarations

Conflict of interest

The other authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trinh, D.V., Nguyen, M.T.T., Huynh, N.T.L. et al. A Study on Crystalline Structure and Li+-Ion Diffusion Coefficient of LiNixFe1−xPO4/C Cathode Material. Arab J Sci Eng 48, 7713–7720 (2023). https://doi.org/10.1007/s13369-023-07799-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07799-5

Keywords

Navigation