Skip to main content
Log in

Enhancement of capacity at high charge/discharge rate and cyclic stability of LiFePO4/C by nickel doping

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

By introducing nickel chemical into the precursor sol of LiFePO4, a series of Ni-doped LiFePO4 composite cathode materials, denoted as LiFe1 − x Ni x PO4/C (x = 0, 0.01, 0.03, 0.05 and 0.10) were prepared by a spray drying–carbothermal approach. The materials were characterized with X-ray diffraction (XRD), scanning electron microscope (SEM), and electrochemical impedance spectrum etc. It is found that the doping of nickel with appropriate amount caused a slight shift of diffraction peaks towards higher angles and enhanced the dispersion of nanoprimary particles, which could be observed from their XRD patterns and SEM images. For the sample with 3 mol% Ni doing, the charge transfer resistance reduced from 52.4 Ω of LiFePO4 to 18.7 Ω of LiFe0.97Ni0.3PO4/C, and the potential interval of the redox peaks reduced from 0.51 to 0.40 V, indicating the better reversible of Ni-doped materials. For the sample LiFe0.97Ni0.03PO4/C, its initial discharge capacities at various rates are 169.2 (0.2 C), 156.2 (1.0 C), 147.9 (2.0 C), 135.5 (5.0 C), and 94.0 (10.0 C) mAh g−1, respectively, enhanced by 55.2 % (at 5.0 C) and 82.1 % (at 10.0 C) compared with LiFePO4. Furthermore, after 200 cycles of charge/discharge at 0.5 C, the capacity of LiFe0.97Ni0.03PO4/C only decreased 8.8 %, but over 25 % decrease was observed for LiFePO4/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144(4):1188–1194

    Article  CAS  Google Scholar 

  2. Tarascon JM, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  3. Jugovic D, Uskokovic D (2009) J Power Sources 190(2):538–544

    Article  CAS  Google Scholar 

  4. Li H, Wang ZX, Chen LQ, Huang XJ (2009) Adv Mater 21(45):4593–4607

    Article  Google Scholar 

  5. Fergus JW (2010) J Power Sources 195(4):939–954

    Article  CAS  Google Scholar 

  6. Wang Y, He P, Zhou H (2011) Energy Environ Sci 4(3):805–817

    Article  CAS  Google Scholar 

  7. Yuan L-X, Wang Z-H, Zhang W-X et al (2011) Energy Environ Sci 4(2):269–284

    Article  CAS  Google Scholar 

  8. Liu WL, Tu JP, Qiao YQ et al (2011) J Power Sources 196:7728–7735

    CAS  Google Scholar 

  9. Zhou Y, Gu CD, Zhou JP et al (2011) Electrochim Acta 56:5054–5059

    Article  CAS  Google Scholar 

  10. Chung SY, Bloking JT, Chiang YM (2002) Nat Mater 1(2):123–128

    Article  CAS  Google Scholar 

  11. Wang GX, Bewlay SL, Konstantinov K et al (2004) Electrochim Acta 50(2–3):443–447

    Article  CAS  Google Scholar 

  12. Liu H, Cao Q, Fu LJ et al (2006) Electrochem Commun 8(10):1553–1557

    Article  CAS  Google Scholar 

  13. Bakenov Z, Taniguchi I (2010) J Electrochem Soc 157(4):A430–A436

    Article  CAS  Google Scholar 

  14. Wang DY, Li H, Shi SQ et al (2005) Electrochim Acta 50(14):2955–2958

    Article  CAS  Google Scholar 

  15. Ge Y, Yan X, Liu J et al (2010) Electrochim Acta 55:5886–5890

    Article  CAS  Google Scholar 

  16. Zhang S, Deng C, Fu BL et al (2010) Electrochim Acta 55:8482–8489

    Article  CAS  Google Scholar 

  17. Lu F, Zhou YC, Liu J et al (2011) Electrochim Acta 56:8833–8838

    Article  CAS  Google Scholar 

  18. Zhang WK, Hu YL, Tao XY et al (2010) J Phys Chem Solids 71(9):1196–1200

    Article  CAS  Google Scholar 

  19. Gao HY, Jiao LF, Peng WX et al (2011) Electrochim Acta 56:9961–9967

    Article  CAS  Google Scholar 

  20. Bilecka, Hintennach A, Rossell MD et al (2011) J Mater Chem 21:5881

    Article  CAS  Google Scholar 

  21. Wang ZH, Yuan LX, Wu M et al (2011) Electrochim Acta 56:8477–8483

    Article  CAS  Google Scholar 

  22. Liu QB, Liao SJ, Song HY et al (2012) J Power Sources 211(8):52–58

    Article  CAS  Google Scholar 

  23. Liu QB, Liao SJ, Song HY et al (2012) Curr Nanosci 8(2):208–214

    Article  CAS  Google Scholar 

  24. Ren Q, Yang Y (2011) Chinese J Struct Chem 30(10):1477–1482

    CAS  Google Scholar 

  25. Zhang DY, Zhang PX, Yi JA et al (2011) J Alloy Compd 509(4):1206–1210

    Article  CAS  Google Scholar 

  26. Yin XG, Huang KL, Liu SQ et al (2010) J Power Sources 195(13):4308–4312

    Article  CAS  Google Scholar 

  27. Yao J, Wu F, Qiu X et al (2011) Electrochim Acta 56:5587–5592

    Article  CAS  Google Scholar 

  28. Ni JF, Morishita M, Kawabe Y et al (2010) J Power Sources 195(9):2877–2882

    Article  CAS  Google Scholar 

  29. Xie J, Imanishi N, Zhang T et al (2009) Electrochim Acta 54:4631–4637

    Article  CAS  Google Scholar 

  30. Wang M, Yang Y, Zhang Y (2011) Nanoscale 3(10):4434–4439

    Article  CAS  Google Scholar 

  31. Ding KQ, Li WJ, Wang QF et al (2012) J Nanosci Nanotechnol 12:3813–3821

    Google Scholar 

  32. Sun C, Rajasekhara S, Goodenough JB et al (2011) J Am Chem Soc 133(7):2132–2135

    Article  CAS  Google Scholar 

  33. Dominko R, Bele M, Gaberscek M et al (2006) J Power Sources 153:274–280

    Article  CAS  Google Scholar 

  34. Dominko R, Bele M, Goupil JM et al (2007) Chem Mater 19:2960–2969

    Article  CAS  Google Scholar 

  35. Hu YS, Guo YG, Dominko R et al (2007) Adv Mater 19(2007):1963–1966

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by National Nature Science Foundation of China (NFSC) (Project Nos. 21076089, 21003052). We thank Dr. Hao Li for the SEM observations, as well as Guangzhou Great Power Co., Ltd. and Guangzhou Tinci Material Technology Co., Ltd. for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijun Liao.

Supporting information available

The charge/discharge curves of LiFe0.97Ni0.03PO4/C and LiFePO4/C composites at different cycle numbers are available free of charge via the Internet at http://support.Springer.com.

ESM 1

(DOC 1304 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Liu, Z., Xiao, G. et al. Enhancement of capacity at high charge/discharge rate and cyclic stability of LiFePO4/C by nickel doping. Ionics 19, 445–450 (2013). https://doi.org/10.1007/s11581-012-0775-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0775-z

Keywords

Navigation