Skip to main content
Log in

Succinic Acid Recovery and Enhancement of Emulsion Liquid Membrane Stability using Synergist Aliquat 336/TOA/Palm Oil System Assisted with Nanoparticle

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Succinic acid (SA) production from fermentation has drawn great interest owing to its simplicity and environmentally friendly process, but it is constrained by high downstream processing costs. The Pickering emulsion liquid membrane (PELM) process containing synergistic carriers (Aliquat 336 and trioctylamine (TOA)) in palm oil is an attractive technology for SA recovery from fermentation broths. The synergistic extraction mechanism was investigated using reactive extraction and the method of slope analysis. Almost 100% of SA was extracted from a 10 g/L simulated solution with a synergistic coefficient of 640. Based on the individual and mixed carrier investigations, it infers that Aliquat 336 and TOA function as base and synergist carriers, respectively. The stability of water-in-oil-in-water (W/O/W) emulsion was studied by varying the agitation speed, Span 80 concentration, and mixed surfactant concentration (Tween 80 and Span 80). At the best stability condition of 5% w/v (Span 80 + Tween 80), hydrophilic–lipophilic balance 6, 300 rpm agitation speed, 0.1% w/v Fe2O3 nanoparticles, 0.1 M Aliquat 336 + 0.1 M TOA, and 1.0 M sodium hydroxide, the emulsion was stable, and almost 100% of SA was extracted and enriched five times in the internal phase. The concentration limit of SA during its recovery by ELM is 10 g/L. Meanwhile, the results from water phase separation and droplet image proved that PELM has the advantage of rapid and efficient demulsification performance, where the demulsification can be completed within 5 min. Hence, synergistic PELM is a new class of ELM for the recovery of SA and it may be extended for downstream and bio-based manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jusoh, N.; Sulaiman, R.N.R.; Othman, N.; Noah, N.F.M.; Rosly, M.B.; Rahman, H.A.: Development of vegetable oil-based emulsion liquid membrane for downstream processing of bio-succinic acid. Food Bioprod. Process. 119, 161–169 (2020). https://doi.org/10.1016/J.FBP.2019.11.003

    Article  Google Scholar 

  2. Cukalovic, A.; Stevens, C.V.: Feasibility of production methods for succinic acid derivatives : a marriage of renewable resources and chemical technology. Biofuels Bioprod. Biorefining. 7(6), 702–714 (2008). https://doi.org/10.1002/bbb

    Article  Google Scholar 

  3. Hong, U.G.; Park, H.W.; Lee, J.; Hwang, S.; Song, I.K.: Hydrogenation of succinic acid to γ-butyrolactone (GBL) over ruthenium catalyst supported on surfactant-templated mesoporous carbon. J. Ind. Eng. Chem. 18, 462–468 (2012). https://doi.org/10.1016/J.JIEC.2011.11.054

    Article  Google Scholar 

  4. Lin, C.; Luque, R.; Clark, J.; Webb, C.; Du, C.: Wheat-based biorefining strategy for fermentative production and chemical transformations of succinic acid. Energy Environ. Sci. 4, 1471–1479 (2011). https://doi.org/10.1039/C0EE00666A

    Article  Google Scholar 

  5. Leung, C.C.J.; Cheung, A.S.Y.; Zhang, A.Y.Z.; Lam, K.F.; Lin, C.S.K.: Utilisation of waste bread for fermentative succinic acid production. Biochem. Eng. J. 65, 10–15 (2012). https://doi.org/10.1016/J.BEJ.2012.03.010

    Article  Google Scholar 

  6. Cao, Y.; Zhang, R.; Sun, C.; Cheng, T.; Liu, Y.; Xian, M.: Fermentative succinate production: an emerging technology to replace the traditional petrochemical processes. Biomed Res. Int. 2013, 723412 (2013). https://doi.org/10.1155/2013/723412

    Article  Google Scholar 

  7. Kumar, R.; Basak, B.; Jeon, B.H.: Sustainable production and purification of succinic acid: A review of membrane-integrated green approach. J. Clean. Prod. 277, 123954 (2020). https://doi.org/10.1016/j.jclepro.2020.123954

    Article  Google Scholar 

  8. Cheng, K.-K.; Zhao, X.; Zeng, J.; Wu, R.-C.; Xu, Y.-Z.; Liu, D.-H.; Zhang, J.: Downstream processing of biotechnological produced succinic acid. Appl. Microbiol. Biotechnol. 95, 841–850 (2012). https://doi.org/10.1007/s00253-012-4214-x

    Article  Google Scholar 

  9. Kurzrock, T.; Weuster-Botz, D.: New reactive extraction systems for separation of bio-succinic acid. Bioprocess Biosyst. Eng. 34, 779–787 (2011). https://doi.org/10.1007/s00449-011-0526-y

    Article  Google Scholar 

  10. Zaman, N.K.; Rohani, R.; Mohammad, A.W.; Isloor, A.M.; Jahim, J.M.: Investigation of succinic acid recovery from aqueous solution and fermentation broth using polyimide nanofiltration membrane. J. Environ. Chem. Eng. 8, 101895 (2020). https://doi.org/10.1016/J.JECE.2017.09.047

    Article  Google Scholar 

  11. Kim, E.H.; You, S.-S.; Kang, J.W.: Effective separation of succinic acid by combined crystallization. Korean J. Chem. Eng. 35, 204–209 (2018). https://doi.org/10.1007/s11814-017-0232-9

    Article  Google Scholar 

  12. Nam, H.G.; Lim, G.W.; Mun, S.: Separation of acetic acid, formic acid, succinic acid, and lactic acid using adsorbent resin. J. Chem. Eng. Data. 57, 2102–2108 (2012). https://doi.org/10.1021/je201065u

    Article  Google Scholar 

  13. Banerjee, S.; Kumar, R.; Pal, P.: Fermentative production of gluconic acid: a membrane-integrated Green process. J. Taiwan Inst. Chem. Eng. 84, 76–84 (2018). https://doi.org/10.1016/j.jtice.2018.01.030

    Article  Google Scholar 

  14. Zhang, W.; Ge, W.; Li, M.; Li, S.; Jiang, M.; Zhang, X.; He, G.: Short review on liquid membrane technology and their applications in biochemical engineering. Chinese J. Chem. Eng. 49, 21–33 (2022). https://doi.org/10.1016/J.CJCHE.2022.03.011

    Article  Google Scholar 

  15. Othman, N.; Noah, N.F.M.; Shu, L.Y.; Ooi, Z.Y.; Jusoh, N.; Idroas, M.; Goto, M.: Easy removing of phenol from wastewater using vegetable oil-based organic solvent in emulsion liquid membrane process. Chinese J. Chem. Eng. 25, 45–52 (2017). https://doi.org/10.1016/j.cjche.2016.06.002

    Article  Google Scholar 

  16. Noah, N.F.M.; Sulaiman, R.N.R.; Othman, N.; Jusoh, N.; Rosly, M.B.: Extractive continuous extractor for chromium recovery: chromium (VI) reduction to chromium (III) in sustainable emulsion liquid membrane process. J. Clean. Prod. 247, 119167 (2020). https://doi.org/10.1016/j.jclepro.2019.119167

    Article  Google Scholar 

  17. Khalid, N.; Kobayashi, I.; Neves, M.A.; Uemura, K.; Nakajima, M.; Nabetani, H.: Encapsulation of β-sitosterol plus γ-oryzanol in O/W emulsions: formulation characteristics and stability evaluation with microchannel emulsification. Food Bioprod. Process. 102, 222–232 (2017). https://doi.org/10.1016/J.FBP.2017.01.002

    Article  Google Scholar 

  18. Wu, M.; He, H.; Xu, F.; Xu, Z.; Zhang, W.; He, Z.; Qu, J.; Chi, R.; Huang, L.: High-efficient and selective extraction of Hf over Zr with DIBK-P350 synergistic extraction system. Sep. Purif. Technol. 212, 255–261 (2019). https://doi.org/10.1016/J.SEPPUR.2018.11.043

    Article  Google Scholar 

  19. Guimarães, A.S.; Silva, L.A.; Pereira, A.M.; Correia, J.C.G.; Mansur, M.B.: Purification of concentrated nickel sulfuric liquors via synergistic solvent extraction of calcium and magnesium using mixtures of D2EHPA and Cyanex 272. Sep. Purif. Technol. 239, 116570 (2020). https://doi.org/10.1016/J.SEPPUR.2020.116570

    Article  Google Scholar 

  20. Noah, N.F.M.; Othman, N.; Kahar, I.N.S.; Suliman, S.S.: Potential use of synergist D2EHPA/Cyanex 302 in kerosene system for reactive extraction: Zinc recovery and organic phase regeneration. Chem. Eng. Process. - Process Intensif. 176, 108976 (2022). https://doi.org/10.1016/J.CEP.2022.108976

    Article  Google Scholar 

  21. Hu, J.; Zou, D.; Chen, J.; Li, D.: A novel synergistic extraction system for the recovery of scandium (III) by Cyanex272 and Cyanex923 in sulfuric acid medium. Sep. Purif. Technol. 233, 115977 (2020). https://doi.org/10.1016/J.SEPPUR.2019.115977

    Article  Google Scholar 

  22. Duan, H.; Wang, S.; Yang, X.; Yuan, X.; Zhang, Q.; Huang, Z.; Guo, H.: Simultaneous separation of copper from nickel in ammoniacal solutions using supported liquid membrane containing synergistic mixture of M5640 and TRPO. Chem. Eng. Res. Des. 117, 460–471 (2017). https://doi.org/10.1016/J.CHERD.2016.11.003

    Article  Google Scholar 

  23. Sulaiman, R.N.R.; Rahman, H.A.; Othman, N.; Rosly, M.B.; Jusoh, N.; Noah, N.F.M.: Extraction of reactive dye via synergistic Aliquat 336/D2EHPA using emulsion liquid membrane system. Korean J. Chem. Eng. 37, 141–150 (2020). https://doi.org/10.1007/s11814-019-0418-4

    Article  Google Scholar 

  24. Moyo, F.: Mini-review on the use of liquid membranes in the extraction of platinum group metals from mining and metal refinery wastewaters/side-streams. J. Bioremediation Biodegrad. 5(4), 1 (2014). https://doi.org/10.4172/2155-6199.1000228

    Article  Google Scholar 

  25. Sulaiman, R.N.R.; Othman, N.; Amin, N.A.S.: Emulsion liquid membrane stability in the extraction of ionized nanosilver from wash water. J. Ind. Eng. Chem. 20, 3243–3250 (2014). https://doi.org/10.1016/j.jiec.2013.12.005

    Article  Google Scholar 

  26. Kumar, A.; Thakur, A.; Panesar, P.S.: A review on emulsion liquid membrane (ELM) for the treatment of various industrial effluent streams. Rev. Environ. Sci. Biotechnol. 18, 153–182 (2019). https://doi.org/10.1007/s11157-019-09492-2

    Article  Google Scholar 

  27. Keyvani, M.; Davarpanah, L.; Vahabzadeh, F.: Rheological characterization of ferrous sulfate-containing water-in-oil-in-water (W1/O/W2) double emulsions. Korean J. Chem. Eng. 31, 1681–1694 (2014). https://doi.org/10.1007/s11814-014-0102-7

    Article  Google Scholar 

  28. Hussein, M.A.; Mohammed, A.A.; Atiya, M.A.: Application of emulsion and Pickering emulsion liquid membrane technique for wastewater treatment: an overview. Environ Sci Pollut Res 26, 36184–36204 (2019). https://doi.org/10.1007/s11356-019-06652-3

    Article  Google Scholar 

  29. Lin, Z.; Zhang, Z.; Li, Y.; Deng, Y.: Magnetic nano-Fe3O4 stabilized Pickering emulsion liquid membrane for selective extraction and separation. Chem. Eng. J. 288, 305–311 (2016). https://doi.org/10.1016/J.CEJ.2015.11.109

    Article  Google Scholar 

  30. Mohammed, S.A.M.; Zouli, N.; Al-Dahhan, M.: Removal of benzoic acid from wastewater by pickering emulsion liquid membrane stabilized by magnetic Fe2O3 nanoparticles. Desalin. Water Treat. 68, 114–121 (2017). https://doi.org/10.5004/dwt.2017.20217

    Article  Google Scholar 

  31. Mohammed, A.A.; Atiya, M.A.; Hussein, M.A.: Studies on membrane stability and extraction of ciprofloxacin from aqueous solution using pickering emulsion liquid membrane stabilized by magnetic nano-Fe2O3. Colloids Surfaces A Physicochem. Eng. Asp. 585, 124044 (2020). https://doi.org/10.1016/j.colsurfa.2019.124044

    Article  Google Scholar 

  32. Nurulashikin, S.; Othman, N.; Jusoh, N.: Synergistic organic liquid formulation for succinic acid extraction from simulated aqueous solution. Malaysian J. Fundam. Appl. Sci. 17, 90–94 (2021). https://doi.org/10.11113/MJFAS.V17N1.2172

    Article  Google Scholar 

  33. Jusoh, N.; Othman, N.: Stability of water-in-oil emulsion in liquid membrane prospect. Malaysian J. Fundam. Appl. Sci. 12, 114–116 (2016). https://doi.org/10.11113/mjfas.v12n3.429

    Article  Google Scholar 

  34. Jusoh, N.; Noah, N.F.M.; Othman, N.: Double emulsion (water-in-oil-in-water) system in succinic acid extraction: a stability study. Chem. Eng. Trans. 63, 523–528 (2018). https://doi.org/10.3303/CET1863088

    Article  Google Scholar 

  35. Peng, W.; Jiao, H.; Shi, H.; Xu, C.: The application of emulsion liquid membrane process and heat-induced demulsification for removal of pyridine from aqueous solutions. Desalination 286, 372–378 (2012). https://doi.org/10.1016/J.DESAL.2011.11.051

    Article  Google Scholar 

  36. Pratiwi, A.I.; Yokouchi, T.; Matsumoto, M.; Kondo, K.: Extraction of succinic acid by aqueous two-phase system using alcohols/salts and ionic liquids/salts. Sep. Purif. Technol. 155, 127–132 (2015). https://doi.org/10.1016/J.SEPPUR.2015.07.039

    Article  Google Scholar 

  37. Inyang, V.; Lokhat, D.: Propionic acid recovery from dilute aqueous solution by emulsion liquid membrane (ELM) technique: optimization using response surface methodology (RSM) and artificial neural network (ANN) experimental design. Sep. Sci. Technol. 57(2), 284–300 (2021). https://doi.org/10.1080/01496395.2021.1890774

    Article  Google Scholar 

  38. Liu, Z.; Huang, J.; Zhang, Y.; Liu, T.; Hu, P.; Liu, H.; Luo, D.: Separation and recovery of vanadium and aluminum from oxalic acid leachate of shale by solvent extraction with Aliquat 336. Sep. Purif. Technol. 249, 116867 (2020). https://doi.org/10.1016/J.SEPPUR.2020.116867

    Article  Google Scholar 

  39. Dutta, S.; Hartkopf-Fröder, C.; Witte, K.; Brocke, R.; Mann, U.: Molecular characterization of fossil palynomorphs by transmission micro-FTIR pectroscopy: Implications for hydrocarbon source evaluation. Int. J. Coal Geol. 115, 13–23 (2013). https://doi.org/10.1016/j.coal.2013.04.003

    Article  Google Scholar 

  40. Purba, J.M.E.; Saleh, C.; Magdaleni, A.R.: Synthesis of polyol from Bintaro seed oil (Cerbera manghas L.) as lubricant base by epoxidation reaction and in situ opening oxirane. J. Phys. Conf. Ser. 1277(1), 012016 (2019). https://doi.org/10.1088/1742-6596/1277/1/012016

    Article  Google Scholar 

  41. Rahman, H.A.; Jusoh, N.; Othman, N.; Rosly, M.B.; Sulaiman, R.N.R.; Noah, N.F.M.: Green formulation for synthetic dye extraction using synergistic mixture of acid-base extractant. Sep. Purif. Technol. 209, 293–300 (2019). https://doi.org/10.1016/j.seppur.2018.07.053

    Article  Google Scholar 

  42. Jusoh, N.; Noah, N.F.M.; Othman, N.: Extraction and recovery optimization of succinic acid using green emulsion liquid membrane containing palm oil as the diluent. Environ. Prog. Sustain. Energy. 38(3), e13065 (2019). https://doi.org/10.1002/ep.13065

    Article  Google Scholar 

  43. Mohammed, A.A.; Atiya, M.A.; Hussein, M.A.: Removal of antibiotic tetracycline using nano-fluid emulsion liquid membrane: Breakage, extraction and stripping studies. Colloids Surfaces A Physicochem. Eng. Asp. 595, 124680 (2020). https://doi.org/10.1016/j.colsurfa.2020.124680

    Article  Google Scholar 

  44. Suliman, S.S.; Othman, N.; Noah, N.F.M.; Johari, K.: Stability of primary emulsion assisted with nanoparticle in emulsion liquid membrane process for zinc extraction. Mater. Today Proc. 65, 3081–3092 (2022). https://doi.org/10.1016/j.matpr.2022.05.532

    Article  Google Scholar 

  45. Jeong, D.W.; Jang, H.; Choi, S.Q.; Choi, M.C.: Enhanced stability of freestanding lipid bilayer and its stability criteria. Sci. Rep. 6, 1–7 (2016). https://doi.org/10.1038/srep38158

    Article  Google Scholar 

  46. McClements, D.J.; Jafari, S.M.: Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci. 251, 55–79 (2018). https://doi.org/10.1016/j.cis.2017.12.001

    Article  Google Scholar 

  47. Chanukya, B.S.; Kumar, M.; Rastogi, N.K.: Optimization of lactic acid pertraction using liquid emulsion membranes by response surface methodology. Sep. Purif. Technol. 111, 1–8 (2013). https://doi.org/10.1016/J.SEPPUR.2013.03.026

    Article  Google Scholar 

  48. Tadros, T.F.: Emulsion Formation, Stability, and Rheology. In: Tadros, T.F. (Ed.) Emulsion Formation and Stability, pp. 1–75. Wiley-VCH Verlag GmbH & Co. KGaA. Germany, Springer (2013). https://doi.org/10.1002/9783527647941.ch1

    Chapter  Google Scholar 

  49. Chakraborty, M., Bhattacharya, C., Datta, S. (2010): Emulsion liquid membranes: Definitions and classification, theories, module design, applications, new directions and perspectives. In: Liquid Membranes. Elsevier, pp 141–199. https://doi.org/10.1016/B978-0-444-53218-3.00004-0

  50. Karjiban, R.A.; Basri, M.; Rahman, M.B.A.; Salleh, A.B.: Structural properties of nonionic Tween80 micelle in water elucidated by molecular dynamics simulation. APCBEE Proc. 3, 287–297 (2012). https://doi.org/10.1016/J.APCBEE.2012.06.084

    Article  Google Scholar 

  51. Jiao, J.; Burgess, D.: Rheology and stability of water-in-oil-in-water multiple emulsions containing Span 83 and Tween 80. AAPS PharmSci 5(1), 62–73 (2003). https://doi.org/10.1208/ps050107

    Article  Google Scholar 

  52. Othman, N.; Noah, N.F.M.; Poh, K.W.; Yi, O.Z.: High performance of chromium recovery from aqueous waste solution using mixture of palm-oil in emulsion liquid membrane. Procedia Engineering. 148, 765–773 (2016). https://doi.org/10.1016/j.proeng.2016.06.611

    Article  Google Scholar 

  53. Chaouchi, S.; Hamdaoui, O.: Acetaminophen extraction by emulsion liquid membrane using Aliquat 336 as extractant. Sep. Purif. Technol. 129, 32–40 (2014). https://doi.org/10.1016/J.SEPPUR.2014.03.021

    Article  Google Scholar 

  54. Jusoh, N.; Othman, N.; Sulaiman, R.N.R.; Noah, N.F.M.; Kamarudin, K.S.N.; Zaini, M.A.A.; Sidik, D.A.B.: Development of palm oil-based synergist liquid membrane formulation for silver recovery from aqueous solution. J. Membr. Sci. Res. 7(1), 59–63 (2021). https://doi.org/10.22079/JMSR.2020.120174.1327

    Article  Google Scholar 

  55. Ooi, Z.Y.; Othman, N.; Mohamed Noah, N.F.: Response surface optimization of kraft lignin recovery from pulping wastewater through emulsion liquid membrane process. Desalin. Water Treat. 57, 7823–7832 (2016). https://doi.org/10.1080/19443994.2015.1024754

    Article  Google Scholar 

  56. Lee, S.C.: Extraction of succinic acid from simulated media by emulsion liquid membranes. J. Memb. Sci. 381, 237–243 (2011). https://doi.org/10.1016/J.MEMSCI.2011.07.039

    Article  Google Scholar 

  57. Hasan, M.A.; Selim, Y.T.; Mohamed, K.M.: Removal of chromium from aqueous waste solution using liquid emulsion membrane. J. Hazard. Mater. 168(2–3), 1537–1541 (2009). https://doi.org/10.1016/j.jhazmat.2009.03.030

    Article  Google Scholar 

  58. Kislik, V.S.: Liquid membranes: Principles & applications in chemical separations & wastewater treatment. Elsevier, Springer (2010)

    Google Scholar 

  59. Goyal, R.K.; Jayakumar, N.S.; Hashim, M.A.: Chromium removal by emulsion liquid membrane using [BMIM] +[NTf 2] - as stabilizer and TOMAC as extractant. Desalination 278(1–3), 50–56 (2011). https://doi.org/10.1016/j.desal.2011.05.001

    Article  Google Scholar 

  60. Zing-Yi, O.; Othman, N.; Mohamad, M.; Rashid, R.: Removal performance of lignin compound from simulated pulping wastewater using emulsion liquid membrane process. Int. J. Glob. Warm. 6(2–3), 270–283 (2014). https://doi.org/10.1504/ijgw.2014.061021

    Article  Google Scholar 

  61. Abbassian, K.; Kargari, A.: Modification of membrane formulation for stabilization of emulsion liquid membrane for extraction of phenol from aqueous solutions. J. Environ. Chem. Eng. 4(4), 3926–3933 (2016). https://doi.org/10.1016/j.jece.2016.08.030

    Article  Google Scholar 

  62. Kumbasar, R.A.: Selective extraction of chromium (VI) from multicomponent acidic solutions by emulsion liquid membranes using tributhylphosphate as carrier. J. Hazard. Mater. 178(1–3), 875–882 (2010). https://doi.org/10.1016/j.jhazmat.2010.02.019

    Article  Google Scholar 

  63. Kulkarni, P.S.: Recovery of uranium(VI) from acidic wastes using tri-n-octylphosphine oxide and sodium carbonate based liquid membranes. Chem. Eng. J. 92, 209–214 (2003). https://doi.org/10.1016/S1385-8947(02)00255-3

    Article  Google Scholar 

  64. Chiha, M.; Hamdaoui, O.; Ahmedchekkat, F.; Pétrier, C.: Study on ultrasonically assisted emulsification and recovery of copper(II) from wastewater using an emulsion liquid membrane process. Ultrason. Sonochem. 17, 318–325 (2010). https://doi.org/10.1016/J.ULTSONCH.2009.09.001

    Article  Google Scholar 

  65. Malik, M.A.; Hashim, M.A.; Nabi, F.: Extraction of metal ions by ELM separation technology. J. Dispers. Sci. Technol. 33(3), 346–356 (2012). https://doi.org/10.1080/01932691.2011.567148

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Universiti Teknologi Malaysia under UTM Professional Development Research University (PDRU) (Q.J130000.21A2.05E51) and Ministry of Higher Education Malaysia for the funding under Fundamental Research Grant Scheme (FRGS)(FRGS/1/2022/STG05/UTM/01/2). The authors are also acknowledging the Centre of Lipids Engineering and Applied Research (CLEAR), Universiti Teknologi Malaysia (UTM) for the facilities provided throughout this research.

Author information

Authors and Affiliations

Authors

Contributions

NFMN was involved in investigation, conceptualization, methodology, writing—original draft, writing—review & editing. NO helped in conceptualization, methodology, resources, supervision, writing—review & editing. NJ helped in conceptualization, methodology, resources, writing—review & editing. INSK contributed to investigation. SSS was involved in investigation.

Corresponding author

Correspondence to Norasikin Othman.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noah, N.F.M., Othman, N., Jusoh, N. et al. Succinic Acid Recovery and Enhancement of Emulsion Liquid Membrane Stability using Synergist Aliquat 336/TOA/Palm Oil System Assisted with Nanoparticle. Arab J Sci Eng 48, 15777–15792 (2023). https://doi.org/10.1007/s13369-023-07616-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07616-z

Keywords

Navigation