Skip to main content

Advertisement

Log in

The Use of Cellulose Nanocrystals to Support Ca(OH)2 Nanoparticles with Diatomite Incorporation in Sulphur Capture at Low Temperatures: Optimisation and Modelling

  • Research Article-chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Cellulose is a renewable resource that can be used to develop sorbents for dry flue gas desulphurisation processes. In this study, nanoparticles of hydrated lime (Ca(OH)2) were impregnated onto cellulose nanocrystals (CNCs) using a co-precipitation technique. The Ca(OH)2/CNCs composite was then mixed with diatomite and hydrated. Fourier transform infrared and X-ray diffraction confirmed the presence of CNCs in the synthesised sorbent. BET (Brunauer–Emmett–Teller) surface area demonstrated an increase in the reaction area (58.564 m2/g) compared to the commercial hydrated lime (18.019 m2/g). Response surface methodology was used for optimisation tests and to statistically model the experimental variables, including hydration time, hydration temperature, diatomite to Ca(OH)2 ratio, sulphation temperature, and inlet sulphur concentration. A quadratic model from the analysis of variance (ANOVA) evaluation found diatomite to Ca(OH)2 ratio as the model term with the most considerable influence towards both sulphation and conversion, with the highest outcome achieving 54% sulphation and 42% conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available on request from the corresponding author. The data are not available due to privacy or ethical restrictions.

Abbreviations

ANOVA:

Analysis of variance

BET:

Brunauer–Emmett–Teller

Ca(OH)2 :

Calcium hydroxide

Ca(NO3)2 :

Calcium nitrate

CCD:

Central composite design

CHNPS:

Calcium hydroxide nanoparticles

CNC:

Cellulose nanocrystals

FTIR:

Fourier transform infrared spectroscopy

NaOH:

Sodium hydroxide

RSM:

Response surface methodology

SO2 :

Sulphur dioxide

SEM:

Scanning electron microscopy

SiO2 :

Silicon dioxide species

XRF:

X-ray fluorescence

XRD:

X-ray diffraction

References

  1. Munawer, M.E.: Human health and environmental impacts of coal combustion and post-combustion wastes. J. Sustain. Min. 17, 87–96 (2018)

    Article  Google Scholar 

  2. Pan, X.: Sulfur oxides: sources, exposures and health effects. In: Encyclopedia of Environmental Health, pp. 290–296. Elsevier, Amsterdam (2011)

  3. Kumar, S.: Acid rain-the major cause of pollution: its causes, effects. Int. J. Appl. Chem. 13, 53–58 (2017)

    Google Scholar 

  4. Srivastava, R.K.; Miller, C.A.; Erickson, C.; Jambhekar, R.: Emissions of sulfur trioxide from coal-fired power plants. J. Air Waste Manag. Assoc. 54, 750–762 (2004)

    Article  Google Scholar 

  5. Vajda, P.: The role of the Industrial Emissions Directive in the European Union and beyond. ERA Forum. 17, 487–499 (2016). https://doi.org/10.1007/s12027-016-0441-4

  6. Carpenter, A.M.: Low water FGD technologies. 73 (2012)

  7. Srivastava, R.K.; Jozewicz, W.: Flue gas desulfurization: the state of the art. J. Air Waste Manag. Assoc. 51, 1676–1688 (2001). https://doi.org/10.1080/10473289.2001.10464387

    Article  Google Scholar 

  8. Miller, B.G.: Formation and control of sulfur oxides. In: Clean Coal Engineering Technology, pp. 467–506. Elsevier, Amsterdam (2017)

  9. Foo, H.; Teong, L.K.; Fernando, N.; Mohamed, A.R.: Flue gas desulphurization at low temperatures using coal fly ash/Ca-based sorbent: determination of rate limiting step. J. Adv. Chem. Eng. 1, 1–10 (2011). https://doi.org/10.4303/jace/A110302

    Article  Google Scholar 

  10. Qin, L.; Han, J.; Chen, W.; Liu, Z.; He, M.; Xing, F.: Enhancing SO2 removal efficiency by lime modified with sewage sludge in a novel integrated desulfurization process. Environ. Prot. Eng. (2017). https://doi.org/10.37190/epe170402

    Article  Google Scholar 

  11. Rathnayake, M.; Julnipitawong, P.; Tangtermsirikul, S.; Toochinda, P.: Utilisation of coal fly ash and bottom ash as solid sorbents for sulfur dioxide reduction from coal fired power plant: life cycle assessment and applications. J. Clean. Prod. 202, 934–945 (2018)

    Article  Google Scholar 

  12. Hall, B.W.; Singer, C.; Jozewicz, W.; Sedman, C.B.; Maxwell, M.A.: Current status of the ADVACATE process for flue gas desulfurization. J. Air Waste Manag. Assoc. 42, 103–110 (1992). https://doi.org/10.1080/10473289.1992.10466964

    Article  Google Scholar 

  13. Shin, H.-G.; Kim, H.; Kim, Y.-N.; Lee, H.-S.: Preparation and characterisation of high surface area calcium hydroxide sorbent for SO2 removal. Curr. Appl. Phys. 9, S276–S279 (2009). https://doi.org/10.1016/j.cap.2009.01.036

    Article  Google Scholar 

  14. Buecker, B., Hovey, L.: Circulating dry scrubbers: a new wave in FGD?|power engineering, https://www.power-eng.com/2011/11/01/circulating-dry-scrubbers-a-new-wave-in-fgd/

  15. Ramsaroop, B.R.: Flue gas desulphurisation using natural calcium based sorbents. (2013)

  16. Krammer, G.; Brunner, Ch.; Khinast, J.; Staudinger, G.: Reaction of Ca(OH)2 with SO2 at low temperature. Ind. Eng. Chem. Res. 36, 1410–1418 (1997). https://doi.org/10.1021/ie960628b

    Article  Google Scholar 

  17. Mashego, D.V.: Preparation, isolation and characterisation of nanocellulose from sugarcane bagasse (2016)

  18. Widiarto, S.; Yuwono, S.D.; Rochliadi, A.; Arcana, I.M.: Preparation and characterization of cellulose and nanocellulose from agro-industrial waste-cassava peel. IOP Conf. Ser. Mater. Sci. Eng. 176, 012052 (2017). https://doi.org/10.1088/1757-899X/176/1/012052

    Article  Google Scholar 

  19. El Bakkari, M.; Bindiganavile, V.; Boluk, Y.: Facile synthesis of calcium hydroxide nanoparticles onto TEMPO-oxidized cellulose nanofibers for heritage conservation. ACS Omega 4, 20606–20611 (2019)

    Article  Google Scholar 

  20. Karatepe, N.; Erdoğan, N.; Ersoy-Meriçboyu, A.; Küçükbayrak, S.: Preparation of diatomite/Ca(OH)2 sorbents and modelling their sulphation reaction. Chem. Eng. Sci. 59, 3883–3889 (2004). https://doi.org/10.1016/j.ces.2004.04.013

    Article  Google Scholar 

  21. Sarabia, L.A.; Ortiz, M.C.; Sánchez, M.S.: Response surface methodology. (2020)

  22. Ait-Amir, B.; Pougnet, P.; El Hami, A.: Meta-model development. In: Embedded Mechatronic Systems 2, pp. 157–187. Elsevier, Amsterdam (2020)

  23. Hou, B.; Qi, H.; You, C.; Xu, X.: Dry desulfurisation in a circulating fluidised bed (CFB) with chain reactions at moderate temperatures. Energy Fuels 19, 73–78 (2005)

    Article  Google Scholar 

  24. Sierra-Fernandez, A.; De la Rosa-García, S.C.; Yañez-Macías, R.; Guerrero-Sanchez, C.; Gomez-Villalba, L.S.; Gómez-Cornelio, S.; Rabanal, M.E.; Schubert, U.S.; Fort, R.; Quintana, P.: Sol–gel synthesis of Mg(OH)2 and Ca(OH)2 nanoparticles: a comparative study of their antifungal activity in partially quaternized p (DMAEMA) nanocomposite films. J. Sol-Gel Sci. Technol. 89, 310–321 (2019)

    Article  Google Scholar 

  25. Jud Sierra, E.; Miller, S.A.; Sakulich, A.R.; MacKenzie, K.; Barsoum, M.W.: Pozzolanic activity of diatomaceous earth: pozzolanic activity of DE. J. Am. Ceram. Soc. 93, 3406–3410 (2010). https://doi.org/10.1111/j.1551-2916.2010.03886.x

    Article  Google Scholar 

  26. Ersoy, O.; Rençberoğlu, M.; Karapınar Güler, D.; Özkaya, Ö.F.: A novel flux that determines the physico-chemical properties of calcined diatomite in its industrial use as a filler and filter aid: thenardite (Na2SO4). Crystals 12, 503 (2022)

    Article  Google Scholar 

  27. Chen, Y.; Xu, S.; Tebaldi, G.; Romeo, E.: Role of mineral filler in asphalt mixture. Road Mater. Pavement Des. 23, 247–286 (2022). https://doi.org/10.1080/14680629.2020.1826351

    Article  Google Scholar 

  28. Macedo, A.R.S.; Silva, A.S.; da Luz, D.S.; Ferreira, R.L.S.; Lourenço, C.S.; Gomes, U.U.: Study of the effect of diatomite on physico-mechanical properties of concrete. Cerâmica 66, 50–55 (2020). https://doi.org/10.1590/0366-69132020663772561

    Article  Google Scholar 

  29. Pinto, R.J.B.; Marcia, C.; Pascoal, C.; Trindade, T.: Composites of cellulose and metal nanoparticles. In: Ebrahimi, F. (Ed.) Nanocomposites—New Trends and Developments. InTech, London (2012)

    Google Scholar 

  30. Chanthiwong, M.; Mongkolthanaruk, W.; Eichhorn, S.J.; Pinitsoontorn, S.: Controlling the processing of co-precipitated magnetic bacterial cellulose/iron oxide nanocomposites. Mater. Des. 196, 109148 (2020). https://doi.org/10.1016/j.matdes.2020.109148

    Article  Google Scholar 

  31. Ogenga, D.O.; Siagi, Z.O.; Onyango, M.S.; Mbarawa, M.: An overview the use of Ca(OH)2/fly ash in flue gas desulphurization. R&D J. S. Afr. Inst. Mech. Eng. 24, 4–8 (2008)

    Google Scholar 

  32. Chiang, R.-K.; Kwag, G.; Kenney, M.E.: New calcium-based sorbents for flue gas desulfurization. In: Dry Scrubbing Technologies for Flue Gas Desulfurization, pp. 115–206. Springer US, Boston, MA (1998)

  33. Koech, L.; Everson, R.; Neomagus, H.; Rutto, H.: Dissolution kinetics of South African coal fly ash and the development of a semi-empirical model to predict dissolution. Chem. Ind. Chem. Eng. Q. 21, 319–330 (2015)

    Article  Google Scholar 

  34. Li, C.; Wang, M.; Xie, B.; Ma, H.; Chen, J.: Enhanced properties of diatomite-based composite phase change materials for thermal energy storage. Renew. Energy 147, 265–274 (2020). https://doi.org/10.1016/j.renene.2019.09.001

    Article  Google Scholar 

  35. Cardoso, F.A.; Fernandes, H.C.; Pileggi, R.G.; Cincotto, M.A.; John, V.M.: Carbide lime and industrial hydrated lime characterisation. Powder Technol. 195, 143–149 (2009). https://doi.org/10.1016/j.powtec.2009.05.017

    Article  Google Scholar 

  36. Pimraksa, K.; Chindaprasirt, P.: Lightweight bricks made of diatomaceous earth, lime and gypsum. Ceram. Int. 35, 471–478 (2009). https://doi.org/10.1016/j.ceramint.2008.01.013

    Article  Google Scholar 

  37. Galván-Ruiz, M.; Hernández, J.; Baños, L.; Noriega-Montes, J.; Rodríguez-García, M.E.: Characterisation of calcium carbonate, calcium oxide, and calcium hydroxide as starting point to the improvement of lime for their use in construction. J. Mater. Civ. Eng. 21, 694–698 (2009)

    Article  Google Scholar 

  38. Jimoh, O.A.; Otitoju, T.A.; Hussin, H.; Ariffin, K.S.; Baharun, N.: Understanding the precipitated calcium carbonate (PCC) production mechanism and its characteristics in the liquid–gas system using milk of lime (MOL) suspension. S. Afr. J. Chem. 70, 1–7 (2017)

    Article  Google Scholar 

  39. Aguayo, M.G.; Fernández Pérez, A.; Reyes, G.; Oviedo, C.; Gacitúa, W.; Gonzalez, R.; Uyarte, O.: Isolation and characterisation of cellulose nanocrystals from rejected fibers originated in the kraft pulping process. Polymers 10, 1145 (2018)

    Article  Google Scholar 

  40. Banza, M.; Rutto, H.: Extraction of cellulose nanocrystals from millet (Eleusine coracana) husk waste: optimisation using Box Behnken design in response surface methodology (RSM). Int. Nano Lett. 12, 1–16 (2022)

  41. Kusmono.; Listyanda, R.F.; Wildan, M.W.; Ilman, M.N.: Preparation and characterisation of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis. Heliyon 6, e05486 (2020). https://doi.org/10.1016/j.heliyon.2020.e05486

    Article  Google Scholar 

  42. Yu, X.; Jiang, Y.; Wu, Q.; Wei, Z.; Lin, X.; Chen, Y.: Preparation and characterization of cellulose nanocrystal extraction from pennisetum hydridum fertilised by municipal sewage sludge via sulfuric acid hydrolysis. Front. Energy Res. 9, 774783 (2021). https://doi.org/10.3389/fenrg.2021.774783

    Article  Google Scholar 

  43. Reka, A.A.; Pavlovski, B.; Makreski, P.: New optimised method for low-temperature hydrothermal production of porous ceramics using diatomaceous earth. Ceram. Int. 43, 12572–12578 (2017). https://doi.org/10.1016/j.ceramint.2017.06.132

    Article  Google Scholar 

  44. Touina, A.; Chernai, S.; Mansour, B.; Hadjar, H.; Ouakouak, A.; Hamdi, B.: Characterisation and efficient dye discoloration of Algerian diatomite from Ouled Djilali-Mostaganem. SN Appl. Sci. 3, 1–13 (2021)

    Article  Google Scholar 

  45. Maina, P.; Mbarawa, M.: Enhancement of lime reactivity by addition of diatomite. Fuel Process. Technol. 92, 1910–1919 (2011). https://doi.org/10.1016/j.fuproc.2011.05.011

    Article  Google Scholar 

  46. Jian, P.; Zhen, Y.; Yanhong, L.; Dengfeng, Z.: Modeling and simulation of a wetted-wall column for SO2 absorption with aqueous ammonia solution. J. Chem. Pharm. Res. 6, 441–449 (2014)

    Google Scholar 

  47. Zhou, C., Zhang, Q.: Study on SO2 absorption characteristics in two-stage wet desulfurization process. In: IOP Conference Series: Earth and Environmental Science, p. 012141. IOP Publishing (2020)

  48. Amjed, N.; Iqbal, M.; Bhatti, I.A.; Nazir, A.: Coal desulphurisation and conditions optimisation through response surface methodology, Khushab mines, Pakistan. Energy Sour. Part A Recovery, Util. Environ. Eff. 39, 1235–1241 (2017)

    Google Scholar 

  49. Patel, K.A.; Brahmbhatt, P.K.: Response surface methodology based desirability approach for optimisation of roller burnishing process parameter. J. Inst. Eng. (India) Ser. C 99, 729–736 (2018)

    Article  Google Scholar 

Download references

Funding

This study was funded by the Eskom Power Plant Engineering Institute (ESKOM).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation was done by RS Makomere; Methodology was done by RS Makomere, H.L Rutto, and L Koech; Formal analysis and investigation were done by RS Makomere; Writing—original draft preparation were done by RS Makomere; Writing—review and editing were done by RS Makomere, H.L Rutto, and L Koech; Funding acquisition was done by H.L Rutto; Resources were done by H.L Rutto and L Koech; and Supervision was done by H.L Rutto and L Koech.

Corresponding author

Correspondence to R. S. Makomere.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makomere, R.S., Rutto, H.L. & Koech, L. The Use of Cellulose Nanocrystals to Support Ca(OH)2 Nanoparticles with Diatomite Incorporation in Sulphur Capture at Low Temperatures: Optimisation and Modelling. Arab J Sci Eng 48, 8871–8885 (2023). https://doi.org/10.1007/s13369-022-07491-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07491-0

Keywords

Navigation