Skip to main content
Log in

Stability Analysis and Implementation of a Wheel-Leg Robot Using the Force-Angle Method

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Considering that stability is an inseparable part of mobile robots, in this paper, the stability of a wheeled-legged robot is investigated. A suitable method for stability analysis should be adopted regarding the robot mechanism and alteration in its height. One of the critical issues in this regard is the displacement of the center of mass for various reasons, such as the manipulator displacement or uncertainties in the robot mechanism. Thus, this paper brings novelty by considering a parameter for the position of the center of mass relative to the geometric center of the robot, which has not yet been discussed as an independent degree of freedom. In this regard, due to its ability to extend in three dimensions and determination of the applied torques according to the variable height of the robot, we propose a novel force-angle method That has been selected and applied for stability analysis. While a specific variable is defined for the relative position of the center of mass, which generalizes this stability method. Then, to validate the extended Force-Angle method, the theoretical results are compared with the obtained results of the constructed WLRIUST robot. The range of stability of the robot was determined at different points of the center of mass and with possible angles for the legs of the robot, and the torques were reported because torque jumps are an important factor in system instability. Hence, These results are also theoretically and practically compared concerning changes in joint torques when the robot is unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Cordes and A. Babu, "SherpaTT: A versatile hybrid wheeled-leg rover," In: Proceedings of the 13th International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS 2016), 2016.

  2. T. Thomson, I. Sharf, and B. Beckman, "Kinematic control and posture optimization of a redundantly actuated quadruped robot," In: 2012 IEEE International Conference on Robotics and Automation: IEEE, pp. 1895–1900, 2012.

  3. S.-Y. Shen, C.-H. Li, C.-C. Cheng, J.-C. Lu, S.-F. Wang, and P.-C. Lin, "Design of a leg-wheel hybrid mobile platform," In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems: IEEE, pp. 4682–4687, 2009.

  4. W. Reid, F. J. Pérez-Grau, A. H. Göktoğan, and S. Sukkarieh, "Actively articulated suspension for a wheel-on-leg rover operating on a martian analog surface," In: 2016 IEEE International Conference on Robotics and Automation (ICRA): IEEE, pp. 5596–5602, 2016.

  5. Niu, J., et al.: Study on structural modeling and kinematics analysis of a novel wheel-legged rescue robot. Int. J. Adv. Rob. Syst. 15(1), 1729881417752758 (2018)

    Google Scholar 

  6. Suresh, P.S.; Arora, V.; Krishna, S.: Dynamic balance control of legged wheeled robot. Int. J. Appl. Eng. Res. 12(15), 5005–5010 (2017)

    Google Scholar 

  7. Schwarz, M.; Beul, M.; Droeschel, D.; Klamt, T.; Lenz, C.; Pavlichenko, D.; Rodehutskors, T.; Schreiber, M.; Araslanov, N.; Ivanov, I.; Razlaw, J.; Schüller, S.; Schwarz, D.; Topalidou-Kyniazopoulou, A.; Behnke, S.: DRC team nimbro rescue: perception and control for centaur-like mobile manipulation robot momaro. In: Spenko, M.; Buerger, S.; Iagnemma, K. (Eds.) The DARPA Robotics Challenge Finals: Humanoid Robots to the Rescue, pp. 145–190. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-74666-1_5

    Chapter  Google Scholar 

  8. G. Bellegarda and K. Byl, "Trajectory optimization for a wheel-legged system for dynamic maneuvers that allow for wheel slip," In: 2019 IEEE 58th Conference on Decision and Control (CDC): IEEE, pp. 7776–7781, 2019.

  9. Bjelonic, M., et al.: Keep rollin’—whole-body motion control and planning for wheeled quadrupedal robots. IEEE. Robot. Autom. Lett 4(2), 2116–2123 (2019)

    Article  Google Scholar 

  10. Wang, S.; Chen, Z.; Li, J.; Wang, J.; Li, J.; Zhao, J.: Flexible motion framework of the six wheel-legged robot: experimental results. IEEE/ASME Trans. Mechatron. 27(4), 2246–2257 (2021)

    Article  Google Scholar 

  11. S. C. Peters and K. Iagnemma, "An analysis of rollover stability measurement for high-speed mobile robots," In: Proceedings 2006 IEEE International Conference on Robotics and Automation. ICRA: IEEE, pp. 3711–3716, 2006.

  12. S. Sugano, Q. Huang, and I. Kato, "Stability criteria in controlling mobile robotic systems," In: Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'93), vol. 2: IEEE, pp. 832–838, 1993.

  13. Q. Huang, S. Sugano, and I. Kato, "Stability control for a mobile manipulator using a potential method," In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94), vol. 2: IEEE, pp. 839–846, 1994.

  14. Goswami, A.: Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Robot. Res. 18(6), 523–533 (1999)

    Article  Google Scholar 

  15. Popovic, M.B.; Goswami, A.; Herr, H.: Ground reference points in legged locomotion: definitions, biological trajectories and control implications. Int. J. Robot. Res 24(12), 1013–1032 (2005)

    Article  Google Scholar 

  16. A. Goswami and V. Kallem, "Rate of change of angular momentum and balance maintenance of biped robots," In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04., vol. 4: IEEE, pp. 3785–3790, 2004.

  17. Papadopoulos, E.; Rey, D.A.: The force-angle measure of tipover stability margin for mobile manipulators. Veh. Syst. Dyn. 33(1), 29–48 (2000)

    Article  Google Scholar 

  18. E. Papadopoulos and D. A. Rey, "A new measure of tipover stability margin for mobile manipulators," In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 4: IEEE, pp. 3111–3116, 1996.

  19. Moosavian, S.A.A.; Alipour, K.: On the dynamic tip-over stability of wheeled mobile manipulators. Int. J. Robot. Autom. 22(4), 322 (2007)

    Google Scholar 

  20. P. R. Roan, A. Burmeister, A. Rahimi, K. Holz, and D. Hooper, "Real-world validation of three tipover algorithms for mobile robots," In: IEEE International Conference on Robotics and Automation: IEEE, pp. 4431–4436, 2010.

  21. Grand, C.; Benamar, F.; Plumet, F.; Bidaud, P.: Stability and traction optimization of a reconfigurable wheel-legged robot. Int. J. Robot. Res. 23(10–11), 1041–1058 (2004)

    Article  Google Scholar 

  22. Messuri, D.; Klein, C.: Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion. IEEE. J. Robot. Automat 1(3), 132–141 (1985)

    Article  Google Scholar 

  23. Vukobratović, M.; Borovac, B.: Zero-moment point—thirty five years of its life. Int. J. Human. Rob. 1(01), 157–173 (2004)

    Article  Google Scholar 

  24. J. Kim, W. K. Chung, Y. Youm, and B. H. Lee, "Real-time ZMP compensation method using null motion for mobile manipulators," In Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), 2: IEEE, pp. 1967–1972, 2002.

  25. Chen, Z.; Li, J.; Wang, S.; Wang, J.; Ma, L.: Flexible gait transition for six wheel-legged robot with unstructured terrains. Robot. Auton. Syst. 150, 103989 (2022)

    Article  Google Scholar 

  26. S. A. A. Moosavian and K. Alipour, "Moment-height tip-over measure for stability analysis of mobile robotic systems," In: IEEE/RSJ International Conference on Intelligent Robots and Systems: IEEE, pp. 5546–5551, 2006.

  27. Peng, H.; Wang, J.; Shen, W.; Shi, D.: Cooperative attitude control for a wheel-legged robot. Peer-to-Peer. Netw. Appl 12(6), 1741–1752 (2019)

    Article  Google Scholar 

  28. Chen, Z., et al.: Control strategy of stable walking for a hexapod wheel-legged robot. ISA Trans. 108, 367–380 (2021)

    Article  Google Scholar 

  29. K. Alipour and S. A. A. Moosavian, "Point-to-point stable motion planning of wheeled mobile robots with multiple arms for heavy object manipulation," In: 2011 IEEE International Conference on Robotics and Automation: IEEE, pp. 6162–6167, 2011.

  30. Alipour, K.; Moosavian, S.A.A.: How to ensure stable motion of suspended wheeled mobile robots. Ind. Robot: An. Int. J 32(2), 139–152 (2011)

    Article  Google Scholar 

  31. Alipour, K.; Moosavian, S.A.A.: Dynamically stable motion planning of wheeled robots for heavy object manipulation. Adv. Robot. 29(8), 545–560 (2015)

    Article  Google Scholar 

  32. Grand, C.; Benamar, F.; Plumet, F.: Motion kinematics analysis of wheeled–legged rover over 3D surface with posture adaptation. Mech. Mach. Theory 45(3), 477–495 (2010)

    Article  MATH  Google Scholar 

  33. Jiang, H.; Xu, G.; Zeng, W.; Gao, F.; Chong, K.: Lateral stability of a mobile robot utilizing an active adjustable suspension. Appl. Sci. 9(20), 4410 (2019)

    Article  Google Scholar 

  34. Garnier, S.; Subrin, K.; Arevalo-Siles, P.; Caverot, G.; Furet, B.: Mobile robot stability for complex tasks in naval industries. Proced. CIRP 72, 297–302 (2018)

    Article  Google Scholar 

  35. Chen, Z.; Li, J.; Wang, J.; Wang, S.; Zhao, J.; Li, J.: Towards hybrid gait obstacle avoidance for a six wheel-legged robot with payload transportation. J. Intell. Rob. Syst. 102(3), 1–21 (2021)

    Article  Google Scholar 

  36. Korayem, M.H.; Azimirad, V.; Vatanjou, H.; Korayem, A.: Maximum load determination of nonholonomic mobile manipulator using hierarchical optimal control. Robotica 30(1), 53–65 (2012)

    Article  Google Scholar 

  37. Korayem, M.; Nekoo, S.R.; Esfeden, R.A.: Dynamic load-carrying capacity of multi-arm cooperating wheeled mobile robots via optimal load distribution method. Arab. J. Sci. Eng. 39(8), 6421–6433 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Korayem.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korayem, M.H., Ardalani, M.R.V. & Toorani, A. Stability Analysis and Implementation of a Wheel-Leg Robot Using the Force-Angle Method. Arab J Sci Eng 48, 11379–11389 (2023). https://doi.org/10.1007/s13369-022-07457-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07457-2

Keywords

Navigation