Skip to main content

DRC Team NimbRo Rescue: Perception and Control for Centaur-Like Mobile Manipulation Robot Momaro

  • Chapter
  • First Online:
The DARPA Robotics Challenge Finals: Humanoid Robots To The Rescue

Abstract

Robots that solve complex tasks in environments too dangerous for humans to enter are desperately needed, e.g. for search and rescue applications. We describe our mobile manipulation robot Momaro, with which we participated successfully in the DARPA Robotics Challenge. It features a unique locomotion design with four legs ending in steerable wheels, which allows it both to drive omnidirectionally and to step over obstacles or climb. Furthermore, we present advanced communication and teleoperation approaches, which include immersive 3D visualization, and 6D tracking of operator head and arm motions. The proposed system is evaluated in the DARPA Robotics Challenge, the DLR SpaceBot Camp 2015, and lab experiments. We also discuss the lessons learned from the competitions and present initial steps towards autonomous operator assistance functions.

A version of this article was previously published in the Journal of Field Robotics, vol. 34, issue 2, pp. 400–425, Wiley 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://archive.darpa.mil/roboticschallenge/.

  2. 2.

    http://archive.darpa.mil/roboticschallenge/teams.html.

  3. 3.

    https://github.com/AIS-Bonn/vector_compression.

  4. 4.

    https://github.com/AIS-Bonn/nimbro_network.

  5. 5.

    The point clouds were compressed using the PCL point cloud compression.

  6. 6.

    http://moveit.ros.org.

  7. 7.

    https://github.com/xqms/rosmon.

  8. 8.

    https://en.wikipedia.org/wiki/Razer_Hydra.

  9. 9.

    https://www3.oculus.com/en-us/rift/.

  10. 10.

    Video: https://www.youtube.com/watch?v=WzQDBRjHRH8.

  11. 11.

    Video: https://www.youtube.com/watch?v=NJHSFelPsGc.

  12. 12.

    http://www.centauro-project.eu.

References

  • Adachi, H., Koyachi, N., Arai, T., Shimiza, A., & Nogami, Y. (1999). Mechanism and control of a leg-wheel hybrid mobile robot. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Vol. 3, pp. 1792–1797).

    Google Scholar 

  • Ballantyne, G. H., & Moll, F. (2003). The da Vinci telerobotic surgical system: The virtual operative field and telepresence surgery. Surgical Clinics of North America, 83(6), 1293–1304.

    Article  Google Scholar 

  • Borst, C., Wimbock, T., Schmidt, F., Fuchs, M., Brunner, B., Zacharias, F., et al. (2009). Rollin’ Justin—Mobile platform with variable base. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 1597–1598).

    Google Scholar 

  • Buss, S. R., & Kim, J.-S. (2005). Selectively damped least squares for inverse kinematics. Graphics, GPU, and Game Tools, 10(3), 37–49.

    Article  Google Scholar 

  • Cho, B.-K., Kim, J.-H., & Oh, J.-H. (2011). Online balance controllers for a hopping and running humanoid robot. Advanced Robotics, 25(9–10), 1209–1225.

    Article  Google Scholar 

  • Cigolle, Z. H., Donow, S., & Evangelakos, D. (2014). A survey of efficient representations for independent unit vectors. Journal of Computer Graphics Techniques, 3(2).

    Google Scholar 

  • DRC-Teams. (2015). What happened at the DARPA Robotics Challenge? www.cs.cmu.edu/~cga/drc/events.

  • Droeschel, D., Schwarz, M., & Behnke, S. (2017). Continuous mapping and localization for autonomous navigation in rough terrain using a 3d laser scanner. Robotics and Autonomous Systems, 88, 104–115.

    Article  Google Scholar 

  • Droeschel, D., Stückler, J., & Behnke, S. (2014). Local multi-resolution representation for 6d motion estimation and mapping with a continuously rotating 3d laser scanner. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 5221–5226).

    Google Scholar 

  • Endo, G., & Hirose, S. (2000). Study on roller-walker (multi-mode steering control and self-contained locomotion). In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (Vol. 3, 2808–2814).

    Google Scholar 

  • Gossow, D., Leeper, A., Hershberger, D., & Ciocarlie, M. (2011). Interactive markers: 3-d user interfaces for ROS applications. IEEE Robotics & Automation Magazine, 4(18), 14–15.

    Article  Google Scholar 

  • Hagn, U., Konietschke, R., Tobergte, A., Nickl, M., Jörg, S., Kübler, B., et al. (2010). DLR MiroSurge: A versatile system for research in endoscopic telesurgery. International Journal of Computer Assisted Radiology and Surgery (IJCARS), 5(2), 183–193.

    Article  Google Scholar 

  • Halme, A., Leppänen, I., Suomela, J., Ylönen, S., & Kettunen, I. (2003). WorkPartner: Interactive human-like service robot for outdoor applications. International Journal of Robotics Research (IJRR), 22(7–8), 627–640.

    Article  Google Scholar 

  • Hebert, P., Bajracharya, M., Ma, J., Hudson, N., Aydemir, A., Reid, J., et al. (2015). Mobile manipulation and mobility as manipulation-design and algorithms of robosimian. Journal of Field Robotics (JFR), 32(2), 255–274.

    Article  Google Scholar 

  • Huang, T., Yang, G., & Tang, G. (1979). A fast two-dimensional median filtering algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, 27(1), 13–18.

    Article  Google Scholar 

  • Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., et al. (2015). Team IHMC’s lessons learned from the DARPA robotics challenge trials. Journal of Field Robotics (JFR), 32(2), 192–208.

    Article  Google Scholar 

  • Kaupisch, T., Noelke, D., & Arghir, A. (2015). DLR spacebot cup—Germany’s space robotics competition. In Proceedings of the Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA).

    Google Scholar 

  • Kim, M.-S., & Oh, J.-H. (2010). Posture control of a humanoid robot with a compliant ankle joint. International Journal of Humanoid Robotics, 07(01), 5–29.

    Article  Google Scholar 

  • Klamt, T. & Behnke, S. (2017). Anytime hybrid driving-stepping locomotion planning. In Accepted for International Conference on Intelligent Robots and Systems (IROS).

    Google Scholar 

  • Kot, T. & Novák, P. (2014). Utilization of the Oculus Rift HMD in mobile robot teleoperation. In Applied Mechanics and Materials (Vol. 555, pp. 199–208). Trans Tech Publications.

    Article  Google Scholar 

  • Kröger, T. (2011). Opening the door to new sensor-based robot applications—The Reflexxes Motion Libraries. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).

    Google Scholar 

  • Kron, A., Schmidt, G., Petzold, B., Zäh, M., Hinterseer, P., Steinbach, E., et al. (2004). Disposal of explosive ordnances by use of a bimanual haptic telepresence system. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 1968–1973).

    Google Scholar 

  • Kuemmerle, R., Grisetti, G., Strasdat, H., Konolige, K., & Burgard, W. (2011). G2o: A general framework for graph optimization. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).

    Google Scholar 

  • Liegeois, A. (1977). Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Transactions on Systems, Man, and Cybernetics, 7(12), 868–871.

    Article  Google Scholar 

  • Lim, J. & Oh, J.-H. (2015). Backward ladder climbing locomotion of humanoid robot with gain overriding method on position control. Journal of Field Robotics (JFR).

    Article  Google Scholar 

  • Martins, H., & Ventura, R. (2009). Immersive 3-D teleoperation of a search and rescue robot using a head-mounted display. In Proceedings of the international Conference on Emerging Technologies and Factory Automation (ETFA).

    Google Scholar 

  • Mehling, J., Strawser, P., Bridgwater, L., Verdeyen, W., & Rovekamp, R. (2007). Centaur: NASA’s mobile humanoid designed for field work. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 2928–2933).

    Google Scholar 

  • Pavlichenko, D. & Behnke, S. (2017). Efficient stochastic multicriteria arm trajectory optimization. In Accepted for International Conference on Intelligent Robots and Systems (IROS).

    Google Scholar 

  • Raibert, M., Blankespoor, K., Nelson, G., Playter, R., et al. (2008). BigDog, the rough–terrain quadruped robot. In Proceedings of the 17th World Congress, The International Federation of Automatic Control (pp. 10823–10825), Seoul, Korea

    Article  Google Scholar 

  • Roennau, A., Kerscher, T., & Dillmann, R. (2010). Design and kinematics of a biologically-inspired leg for a six-legged walking machine. In 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) (pp. 626 –631).

    Google Scholar 

  • Satzinger, B., Lau, C., Byl, M., & Byl, K. (2014). Experimental results for dexterous quadruped locomotion planning with RoboSimian. In Proceedings of the International Symposium on Experimental Robotics (ISER).

    Google Scholar 

  • Schwarz, M., Beul, M., Droeschel, D., Schüller, S., Periyasamy, A. S., Lenz, C., et al. (2016a). Supervised autonomy for exploration and mobile manipulation in rough terrain with a centaur-like robot. Frontiers in Robotics and AI, 3, 57.

    Article  Google Scholar 

  • Schwarz, M., Rodehutskors, T., Schreiber, M., & Behnke, S. (2016b). Hybrid driving-stepping locomotion with the wheeled-legged robot momaro. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).

    Google Scholar 

  • Semini, C., Tsagarakis, N., Guglielmino, E., Focchi, M., Cannella, F., & Caldwell, D. (2011). Design of HyQ—A hydraulically and electrically actuated quadruped robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225(6), 831–849.

    Article  Google Scholar 

  • Smith, C., Christensen, H., et al. (2009). Wiimote robot control using human motion models. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5509–5515).

    Google Scholar 

  • Stentz, A., Herman, H., Kelly, A., Meyhofer, E., Haynes, G. C., Stager, D., et al. (2015). CHIMP, the CMU highly intelligent mobile platform. Journal of Field Robotics (JFR), 32(2), 209–228.

    Article  Google Scholar 

  • Stückler, J., Droeschel, D., Gräve, K., Holz, D., Schreiber, M., Topalidou-Kyniazopoulou, A., et al. (2014). Increasing flexibility of mobile manipulation and intuitive human-robot interaction in RoboCup@Home. In RoboCup 2013: Robot World Cup XVII (pp. 135–146). Springer.

    Google Scholar 

  • Stückler, J., Schwarz, M., Schadler, M., Topalidou-Kyniazopoulou, A., & Behnke, S. (2015). NimbRo Explorer: Semiautonomous exploration and mobile manipulation in rough terrain. Journal of Field Robotics (JFR).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union’s Horizon 2020 Programme under Grant Agreement 644839 (CENTAURO) and by Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) under Grant No. SORA1413.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Schwarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schwarz, M. et al. (2018). DRC Team NimbRo Rescue: Perception and Control for Centaur-Like Mobile Manipulation Robot Momaro. In: Spenko, M., Buerger, S., Iagnemma, K. (eds) The DARPA Robotics Challenge Finals: Humanoid Robots To The Rescue. Springer Tracts in Advanced Robotics, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-319-74666-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74666-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74665-4

  • Online ISBN: 978-3-319-74666-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics