Skip to main content
Log in

A Survey of Off-Road Mobile Robots: Slippage Estimation, Robot Control, and Sensing Technology

  • Survey Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Wheeled field robots have promising widespread civil and military applications in off-road conditions. The complex off-road working conditions pose substantial challenges in applying field robots, especially the newly emerged fully autonomous “smart” mobile ground robots without human intervention. Two key issues arise for a successful navigation, namely geometrical and non-geometrical obstacles. So far, most of the research on off-road mobile robots has focused on approaches to avoid geometrical obstacles by ignoring the influence of wheel slippage on the robot mobility. On the other hand, wheel slippage plays a key role in the performance of off-road mobile robots and must be addressed. The purpose of this paper is to summarize the methods in the study on the wheel slippage estimation and modeling of off-road mobile robots, along with the control and sensing technology, and report the state-of-the-art in this research field. Multiple approaches: proprioceptive-sensor-based, exteroceptive-sensor-based, model-based slippage estimation and compensation methods will be discussed. In addition, this paper also investigates the new research trend of developing machine learning methods to predict and compensate for the wheel slippage under complex working conditions. Current technical challenges and room for further research improvement are also generalized. This paper will help researchers new in this field to be familiar with the wheel slippage modeling, control and sensing technology, and inspire for the next-generation robot design that can help address the wheel slippage issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code or Data Availability

Not applicable.

References

  1. Zou, T., Angeles, J., Hassani, F.: Dynamic modeling and trajectory tracking control of unmanned tracked vehicles. Robotics and Autonomous Systems 110, 102–111 (2018)

    Google Scholar 

  2. Ghotbi, B., González, F., Kövecses, J., Angeles, J.: Vehicle-terrain interaction models for analysis and performance evaluation of wheeled rovers. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3138–3143 (2012). IEEE

  3. Mondal, K., Rodriguez, A.A., Manne, S.S., Das, N., Wallace, B.:Comparison of kinematic and dynamic model based linear model predictive control of non-holonomic robot for trajectory tracking: Critical trade-offs addressed. In: IASTED International Conference on Mechatronics and Control (2019)

  4. Iagnemma, K., Dubowsky, S.: Mobile Robots in Rough Terrain: Estimation, Motion Planning, and Control with Application to Planetary Rovers vol. 12. Springer, (2004)

  5. Siciliano, B., Khatib, O., Kröger, T. (eds.): Springer Handbook of Robotics. Springer, (2008)

  6. Visconte, C., Cavallone, P., Carbonari, L., Botta, A., Quaglia, G.:Mechanism for the locomotion layout reconfiguration of the agri_q mobile robot. In: International Conference on Robotics in Alpe-Adria Danube Region, pp. 390–399 (2020). Springer

  7. Cavallone, P., Botta, A., Carbonari, L., Visconte, C., Quaglia, G.:The agri. q mobile robot: Preliminary experimental tests. In: The International Conference of IFToMM ITALY, pp. 524–532 (2020). Springer

  8. Schuster, M.J., Brunner, S.G., Bussmann, K., Büttner, S., Dömel, A., Hellerer, M., Lehner, H., Lehner, P., Porges, O., Reill, J., et al.: Towards autonomous planetary exploration. Journal of Intelligent & Robotic Systems 93(3), 461–494 (2019)

    Google Scholar 

  9. Zhao, J., Gao, J., Zhao, F., Liu, Y.: A search-and-rescue robot system for remotely sensing the underground coal mine environment. Sensors 17(10), 2426 (2017)

    Google Scholar 

  10. Hirose, S.: Three basic types of locomotion in mobile robots. In: Fifth International Conference on Advanced Robotics’ Robots in Unstructured Environments, pp. 12–17 (1991). IEEE

  11. Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D.: Introduction to Autonomous Mobile Robots, 2nd edn. The MIT press, (2011)

  12. Zhu, Y., Fei, Y., Xu, H.: Stability analysis of a wheel-track-leg hybrid mobile robot. Journal of Intelligent & Robotic Systems 91(3), 515–528 (2018)

    Google Scholar 

  13. Bruzzone, L., Quaglia, G.: Locomotion systems for ground mobile robots in unstructured environments. Mechanical sciences 3(2), 49–62 (2012)

    Google Scholar 

  14. Sebastian, B., Ben-Tzvi, P.: Active disturbance rejection control for handling slip in tracked vehicle locomotion. Journal of Mechanisms and Robotics 11(2), 021003 (2019)

    Google Scholar 

  15. Rubio, F., Valero, F., Llopis-Albert, C.: A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems 16(2), 1729881419839596 (2019)

    Google Scholar 

  16. Pappalardo, C.M., Guida, D.: Forward and inverse dynamics of a unicycle-like mobile robot. Machines 7(1), 5 (2019)

    Google Scholar 

  17. Tenreiro Machado, J., Silva, M.: An overview of legged robots. In: International Symposium on Mathematical Methods in Engineering, pp. 1–40 (2006)

  18. Yang, J.-M., Kim, J.-H.:A strategy of optimal fault tolerant gait for the hexapod robot in crab walking. In: Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), vol. 2, pp. 1695–1700 (1998). IEEE

  19. Bakker, T., van Asselt, K., Bontsema, J., Müller, J., van Straten, G.: Autonomous navigation using a robot platform in a sugar beet field. Biosystems Engineering 109(4), 357–368 (2011)

    Google Scholar 

  20. Kitano, S., Hirose, S., Horigome, A., Endo, G.: Titan-xiii: sprawling-type quadruped robot with ability of fast and energy-efficient walking. Robomech Journal 3(1), 1–16 (2016)

    Google Scholar 

  21. Guarnieri, M., Takao, I., Debenest, P., Takita, K.,Fukushima, E.,Hirose, S.:Helios ix tracked vehicle for urban search and rescue operations: Mechanical design and first tests. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1612–1617 (2008). IEEE

  22. Ben-Tzvi, P., Saab, W.: A hybrid tracked-wheeled multi-directional mobile robot. Journal of Mechanisms and Robotics 11(4) (2019)

  23. Sasaki, T., Fujita, T.: Gap traversing motion via a hexapod tracked mobile robot based on gap width detection. Journal of Robotics and Mechatronics 33(3), 665–675 (2021)

    Google Scholar 

  24. Zhai, Y., Gao, P., Sun, Y., Zhao, S., Jiang, Z., Li, B.,Hu, Y., Zhang, J.: Gait planning for a multi-motion mode wheel-legged hexapod robot. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 449–454 (2016). IEEE

  25. Michaud, F., Letourneau, D., Arsenault, M., Bergeron, Y., Cadrin, R., Gagnon, F., Legault, M.-A., Millette, M., Paré, J.-F., Tremblay, M.-C., et al.: Multi-modal locomotion robotic platform using leg-track-wheel articulations. Autonomous Robots 18(2), 137–156 (2005)

    Google Scholar 

  26. Oriolo, G.: In: Baillieul, J., Samad, T. (eds.) Wheeled Robots, pp. 1–9. Springer, (2013)

  27. Xie, W., Ma, B.: Smooth time-invariant control for leaderless consensus of networked nonholonomic systems. International Journal of Advanced Robotic Systems 14(6), 1–9 (2017)

  28. Tătar, M.O., Popovici, C., Mândru, D., Ardelean, I., Pleşa, A.:Design and development of an autonomous omni-directional mobile robot with mecanum wheels. In: 2014 IEEE International Conference on Automation, Quality and Testing, Robotics, pp. 1–6 (2014). IEEE

  29. Ishigami, G., Iagnemma, K., Overholt, J., Hudas, G.: Design, development, and mobility evaluation of an omnidirectional mobile robot for rough terrain. Journal of Field Robotics 32(6), 880–896 (2015)

    Google Scholar 

  30. Nie, C., Assaliyski, M., Spenko, M.: Design and experimental characterization of an omnidirectional unmanned ground vehicle for unstructured terrain. Robotica 33(9), 1984–2000 (2015)

    Google Scholar 

  31. Gonzalez, R., Fiacchini, M., Iagnemma, K.: Slippage prediction for off-road mobile robots via machine learning regression and proprioceptive sensing. Robotics and Autonomous Systems 105, 85–93 (2018)

    Google Scholar 

  32. Karunasekera, H., Zhang, H., Xi, T., Wang, H.:Stereo vision based negative obstacle detection. In: 2017 13th IEEE International Conference on Control & Automation (ICCA), pp. 834–838 (2017). IEEE

  33. Erke Shang, X.A., Wu, T., Hu, T., Yuan, Q., He, H.: Lidar based negative obstacle detection for field autonomous land vehicles. Journal of Field Robotics 33(5), 591–617 (2016)

    Google Scholar 

  34. Manduchi, R., Castano, A., Talukder, A., Matthies, L.: Obstacle detection and terrain classification for autonomous off-road navigation. Autonomous robots 18(1), 81–102 (2005)

    Google Scholar 

  35. Wong, C., Yang, E., Yan, X.-T., Gu, D.: Autonomous robots for harsh environments: a holistic overview of current solutions and ongoing challenges. Systems Science & Control Engineering 6(1), 213–219 (2018)

    Google Scholar 

  36. Tian, Y., Sarkar, N.: Control of a mobile robot subject to wheel slip. Journal of Intelligent & Robotic Systems 74(3), 915–929 (2014)

    Google Scholar 

  37. Gonzalez, R., Iagnemma, K.: Slippage estimation and compensation for planetary exploration rovers. state of the art and future challenges. Journal of Field Robotics 35( 4), 564–577 (2018)

  38. Lopez-Arreguin, A.J.R., Montenegro, S.: Machine learning in planetary rovers: A survey of learning versus classical estimation methods in terramechanics for in situ exploration. Journal of Terramechanics 97, 1–17 (2021)

    Google Scholar 

  39. Yoshida, K., Hamano, H.: Motion dynamics of a rover with slip-based traction model. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), vol. 3, pp. 3155–3160 (2002). IEEE

  40. Young, K.: Mars Rover Escapes from the Bay of Lamentation. (2006). https://www.newscientist.com/article/dn9286-mars-rover-escapes-from-the-bay-of-lamentation. Accessed 16 Feb 2022

  41. Gonzalez, R., Apostolopoulos, D., Iagnemma, K.: Slippage and immobilization detection for planetary exploration rovers via machine learning and proprioceptive sensing. Journal of Field Robotics 35(2), 231–247 (2018)

    Google Scholar 

  42. Campbell, S., O’Mahony, N., Krpalcova, L., Riordan, D., Walsh, J., Murphy, A.,Ryan, C.:Sensor technology in autonomous vehicles: A review. In: 2018 29th Irish Signals and Systems Conference (ISSC), pp. 1–4 (2018). IEEE

  43. Ward, C.C., Iagnemma, K.: A dynamic-model-based wheel slip detector for mobile robots on outdoor terrain. IEEE Trans Robot 24(4), 821–831 (2008)

    Google Scholar 

  44. Chen, C.L., Huang, S.H., Zhou, J.H.:Mobile robot localization by tracking built-in encoders. In: 2014 International Symposium on Computer, Consumer and Control, pp. 840–843 (2014). IEEE

  45. Kim, D.I., Moon, Y.J.: A mobile robot based on slip compensating algorithm for cleaning of stud holes at reactor vessel in npp. Transactions of the Korean Society of Pressure Vessels and Piping 16(1), 84–91 (2020)

  46. Nistler, J.R., Selekwa, M.F.: Gravity compensation in accelerometer measurements for robot navigation on inclined surfaces. Procedia Computer Science 6, 413–418 (2011)

    Google Scholar 

  47. Reina, G., Ojeda, L., Milella, A., Borenstein, J.: Wheel slippage and sinkage detection for planetary rovers. IEEE/ASME Transactions on Mechatronics 11(2), 185–195 (2006)

    Google Scholar 

  48. Panich, S., Afzulpurkar, N.: Mobile robot integrated with gyroscope by using ikf. International Journal of Advanced Robotic Systems 8(2), 22 (2011)

    Google Scholar 

  49. Yi, D.-H., Lee, T.-J., Cho, D.-I., et al.: A new localization system for indoor service robots in low luminance and slippery indoor environment using afocal optical flow sensor based sensor fusion. Sensors 18(1), 171 (2018)

    Google Scholar 

  50. Rogers-Marcovitz, F., George, M., Seegmiller, N., Kelly, A.:Aiding off-road inertial navigation with high performance models of wheel slip. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 215–222 (2012). IEEE

  51. Yi, J., Zhang, J., Song, D., Jayasuriya, S.: IMU-based localization and slip estimation for skid-steered mobile robots. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2845–2850 (2007). IEEE

  52. Wang, G., Liu, X., Zhao, Y., Han, S.: Neural network-based adaptive motion control for a mobile robot with unknown longitudinal slipping. Chinese Journal of Mechanical Engineering 32(1), 1–9 (2019)

    Google Scholar 

  53. Burguera, A., González, Y., Oliver, G.: Sonar sensor models and their application to mobile robot localization. Sensors 9(12), 10217–10243 (2009)

    Google Scholar 

  54. Riopelle, N., Caspers, P., Sofge, D.:Terrain classification for autonomous vehicles using bat-inspired echolocation. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–6 (2018). IEEE

  55. Bayar, G., Bergerman, M., Koku, A.B., et al.: Improving the trajectory tracking performance of autonomous orchard vehicles using wheel slip compensation. Biosystems Engineering 146, 149–164 (2016)

    Google Scholar 

  56. Ross, R., Hoque, R.: Augmenting gps with geolocated fiducials to improve accuracy for mobile robot applications. Applied Sciences 10(1), 146 (2020)

    Google Scholar 

  57. Tsai, S.-H., Kao, L.-H., Lin, H.-Y., Lin, T.-C., Song, Y.-L., Chang, L.-M.: A sensor fusion based nonholonomic wheeled mobile robot for tracking control. Sensors 20(24), 7055 (2020)

    Google Scholar 

  58. Angelova, A., Matthies, L., Helmick, D., Perona, P.: Learning and prediction of slip from visual information. Journal of Field Robotics 24(3), 205–231 (2007)

    Google Scholar 

  59. Luo, W., Xiao, Z., Ebel, H., Eberhard, P.:Stereo vision-based autonomous target detection and tracking on an omnidirectional mobile robot. In: ICINCO (2), pp. 268–275 (2019)

  60. Reina, G., Underwood, J., Brooker, G., Durrant-Whyte, H.: Radar-based perception for autonomous outdoor vehicles. Journal of Field Robotics 28(6), 894–913 (2011)

    Google Scholar 

  61. Lee, H., Chung, W.: Terrain classification for mobile robots on the basis of support vector data description. International Journal of Precision Engineering and Manufacturing 19(9), 1305–1315 (2018)

    Google Scholar 

  62. Pang, C., Zhong, X., Hu, H., Tian, J., Peng, X., Zeng, J.: Adaptive obstacle detection for mobile robots in urban environments using downward-looking 2d lidar. Sensors 18(6), 1749 (2018)

    Google Scholar 

  63. Wolf, D.F., Sukhatme, G.S., Fox, D., Burgard, W.:Autonomous terrain mapping and classification using hidden markov models. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 2026–2031 (2005). IEEE

  64. Brooks, C.A., Iagnemma, K.: Self-supervised terrain classification for planetary surface exploration rovers. Journal of Field Robotics 29(3), 445–468 (2012)

    Google Scholar 

  65. Kragh,M., Jørgensen, R.N., Pedersen, H.:Object detection and terrain classification in agricultural fields using 3d lidar data. In: International Conference on Computer Vision Systems, pp. 188–197 (2015). Springer

  66. Galati, R., Reina, G.: Terrain awareness using a tracked skid-steering vehicle with passive independent suspensions. Frontiers in Robotics and AI 6, 46 (2019)

    Google Scholar 

  67. Regmi, N.R., Giardino, J.R., McDonald, E.V., Vitek, J.D.: A review of mass movement processes and risk in the critical zone of earth. Developments in Earth Surface Processes 19, 319–362 (2015)

    Google Scholar 

  68. Xu, N., Tang, Z., Zhou, J., Askari, H.: Intelligent tire-based slip ratio estimation using different machine learning algorithms. arXiv:2106.08961 (2021)

  69. Endo, M., Endo, S., Nagaoka, K.,Yoshida, K.: Terrain-dependent slip risk prediction for planetary exploration rovers. Robotica, 1–14 (2021)

  70. Skonieczny, K., Shukla, D.K., Faragalli, M., Cole, M., Iagnemma, K.D.: Data-driven mobility risk prediction for planetary rovers. Journal of Field Robotics 36(2), 475–491 (2019)

    Google Scholar 

  71. Ojeda, L., Cruz, D., Reina, G., Borenstein, J.: Current-based slippage detection and odometry correction for mobile robots and planetary rovers. IEEE Transactions on robotics 22(2), 366–378 (2006)

    Google Scholar 

  72. Song, Z., Zweiri, Y., Seneviratne, L.D., Althoefer, K.: Non-linear observer for slip parameter estimation of unmanned wheeled vehicles. IFAC Proceedings Volumes 40(20), 458–463 (2007)

    Google Scholar 

  73. Bouguelia, M.-R., Gonzalez, R., Iagnemma, K., Byttner, S.: Unsupervised classification of slip events for planetary exploration rovers. Journal of Terramechanics 73, 95–106 (2017)

    Google Scholar 

  74. Gonzalez, R., Chandler, S., Apostolopoulos, D.: Characterization of machine learning algorithms for slippage estimation in planetary exploration rovers. Journal of Terramechanics 82, 23–34 (2019)

    Google Scholar 

  75. Omura, T., Ishigami, G.: Wheel slip classification method for mobile robot in sandy terrain using in-wheel sensor. Journal of Robotics and Mechatronics 29(5), 902–910 (2017)

    Google Scholar 

  76. Kruger, J., Rogg, A., Gonzalez, R.:Estimating wheel slip of a planetary exploration rover via unsupervised machine learning. In: 2019 IEEE Aerospace Conference, pp. 1–8 (2019). IEEE

  77. Zhang, T., Peng, S., Jia, Y., Tian, H., Sun, J., Yan, C.: Slip estimation for mars rover zhurong based on data drive. Applied Sciences 12(3), 1676 (2022)

    Google Scholar 

  78. Zhang, T., Peng, S., Jia, Y., Sun, J., Tian, H., Yan, C.: Slip estimation model for planetary rover using gaussian process regression. Applied Sciences 12(9), 4789 (2022)

    Google Scholar 

  79. Nourizadeh, P., Stevens McFadden, F.J., Browne, W.N.: In situ slip estimation for mobile robots in outdoor environments. Journal of Field Robotics (2022)

  80. Basri, M., Karapetyan, A., Hassan, B., Khonji, M., Dias, J.:A hybrid deep learning approach for vehicle wheel slip prediction in off-road environments. In: 2022 IEEE International Symposium on Robotic and Sensors Environments (ROSE), pp. 1–7 (2022). IEEE

  81. Li, M., Imou, K., Wakabayashi, K., Yokoyama, S.: Review of research on agricultural vehicle autonomous guidance. International Journal of Agricultural and Biological Engineering 2(3), 1–16 (2009)

    Google Scholar 

  82. Lindgren, D., Hague, T., Smith, P.P., Marchant, J.A.: Relating torque and slip in an odometric model for an autonomous agricultural vehicle. Autonomous Robots 13(1), 73–86 (2002)

    MATH  Google Scholar 

  83. Reina, G., Ishigami, G., Nagatani, K., Yoshida, K.: Odometry correction using visual slip angle estimation for planetary exploration rovers. Advanced Robotics 24(3), 359–385 (2010)

    Google Scholar 

  84. Cunningham, C., Ono, M., Nesnas, I., Yen, J.,Whittaker, W.L.:Locally-adaptive slip prediction for planetary rovers using gaussian processes. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5487–5494 (2017). IEEE

  85. Brooks, C.A., Iagnemma, K.: Vibration-based terrain classification for planetary exploration rovers. IEEE Transactions on Robotics 21(6), 1185–1191 (2005)

    Google Scholar 

  86. Zhou, R., Feng, W.,Yang, H., Gao, H., Li, N., Deng, Z.,Ding, L.: Predicting terrain mechanical properties in sight for planetary rovers with semantic clues. arXiv preprint arXiv:2011.01872 (2020)

  87. Yoshida, K., Watanabe, T., Mizuno, N., Ishigami, G.:Slip, traction control, and navigation of a lunar rover. In: Proceedings of the 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Nara, Japan (2003)

  88. Gargiulo, A.M., di Stefano, I., Genova, A.: Model-based slippage estimation to enhance planetary rover localization with wheel odometry. Applied Sciences 11(12), 5490 (2021)

    Google Scholar 

  89. Ishigami, G., Miwa, A., Nagatani, K., Yoshida, K.: Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil. Journal of Field robotics 24(3), 233–250 (2007)

    Google Scholar 

  90. Ding, L., Gao, H., Deng, Z., Liu, Z.:Slip-ratio-coordinated control of planetary exploration robots traversing over deformable rough terrain. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4958–4963 (2010). IEEE

  91. Guo, J., Li, W., Gao, H., Ding, L., Guo, T., Huang, B., Deng, Z.: In-situ wheel sinkage estimation under high slip conditions for grouser-wheeled planetary rovers: Another immobility index. Mechanism and Machine Theory 158, 104243 (2021)

    Google Scholar 

  92. Li, Y., Ding, L., Liu, G.: Error-tolerant switched robust extended kalman filter with application to parameter estimation of wheel-soil interaction. IEEE Transactions on Control Systems Technology 22(4), 1448–1460 (2014)

    Google Scholar 

  93. Reina, G., Galati, R.: Slip-based terrain estimation with a skid-steer vehicle. Vehicle System Dynamics 54(10), 1384–1404 (2016)

    Google Scholar 

  94. Li, W., Guo, J., Ding, L., Wang, J., Gao, H., Deng, Z.: Teleoperation of wheeled mobile robot with dynamic longitudinal slippage. IEEE Transactions on Control Systems Technology (2022)

  95. Liu, F., Li, X., Yuan, S., Lan, W.: Slip-aware motion estimation for off-road mobile robots via multi-innovation unscented kalman filter. IEEE Access 8, 43482–43496 (2020)

    Google Scholar 

  96. Tsubaki, H., Ishigami, G.: Experimental study on wheel-soil interaction mechanics using in-wheel sensor and particle image velocimetry part i: Analysis and modeling of normal stress of lightweight wheeled vehicles. Journal of Terramechanics 93, 23–39 (2021)

    Google Scholar 

  97. Wang, D., Low, C.B.:Modeling skidding and slipping in wheeled mobile robots: control design perspective. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1867–1872 (2006). IEEE

  98. Low, C.B., Wang, D.: Gps-based path following control for a car-like wheeled mobile robot with skidding and slipping. IEEE Trans Control Syst Technol 16(2), 340–347 (2008)

    Google Scholar 

  99. Ryu, J.-C., Agrawal, S.K.: Differential flatness-based robust control of mobile robots in the presence of slip. The International Journal of Robotics Research 30(4), 463–475 (2011)

  100. Chen, M.: Disturbance attenuation tracking control for wheeled mobile robots with skidding and slipping. IEEE Trans Ind Electron 64(4), 3359–3368 (2016)

    Google Scholar 

  101. Hoang, N.-B., Kang, H.-J.: Neural network-based adaptive tracking control of mobile robots in the presence of wheel slip and external disturbance force. Neurocomputing 188, 12–22 (2016)

    Google Scholar 

  102. Iossaqui, J.G., Camino, J.F.:Wheeled robot slip compensation for trajectory tracking control problem with time-varying reference input. In: 9th International Workshop on Robot Motion and Control, pp. 167–173 (2013). IEEE

  103. Burghi, T.B., Iossaqui, J.G., Camino, J.F.: Kinematic control design for wheeled mobile robots with longitudinal and lateral slip. arXiv:2105.06501 (2021)

  104. Yi, J., Song, D., Zhang, J., Goodwin, Z.:Adaptive trajectory tracking control of skid-steered mobile robots. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 2605–2610 (2007). IEEE

  105. Gonzalez, R., Apostolopoulos, D., Iagnemma, K.: Improving rover mobility through traction control: simulating rovers on the moon. Autonomous Robots 43(8), 1977–1988 (2019)

    Google Scholar 

  106. Sunusi, I.I., Zhou, J., Wang, Z.Z., Sun, C., Ibrahim, I.E., Opiyo, S., Soomro, S.A., Sale, N.A., Olanrewaju, T., et al.: Intelligent tractors: Review of online traction control process. Comput Electron Agric 170,(2020)

  107. Yoshida, K., Hamano, H., Watanabe, T.: Slip-based traction control of a planetary rover. In: Siciliano, B., Dario, P. (eds.) Experimental Robotics VIII, pp. 644–653. Springer, (2003)

  108. Lamon, P., Krebs, A., Lauria, M., Siegwart, R., Shooter, S.:Wheel torque control for a rough terrain rover. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 5, pp. 4682–4687 (2004). IEEE

  109. Krebs, A., Thueer, T., Carrasco, E., Oung, R., Siegwart, R.:Towards torque control of the crab rover. In: 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS’08) (2008). Canadian Space Agency (CSA-ASC); German Aerospace Agency (DLR), ESA, the Japanese Aerospace Exploration Agency (JAXA); National Aerospace Administration (NASA)

  110. Helmick, D.M., Roumeliotis, S.I., Cheng, Y., Clouse, D.S., Bajracharya, M., Matthies, L.H.: Slip-compensated path following for planetary exploration rovers. Advanced Robotics 20(11), 1257–1280 (2006)

    Google Scholar 

  111. Lhomme-Desages, D., Grand, C., Amar, F.B., Guinot, J.-C.: Doppler-based ground speed sensor fusion and slip control for a wheeled rover. IEEE/ASME Transactions on Mechatronics 14(4), 484–492 (2009)

    Google Scholar 

  112. Caltabiano, D., Ciancitto, D., Muscato, G.:Experimental results on a traction control algorithm for mobile robots in volcano environment. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 5, pp. 4375–4380 (2004). IEEE

  113. Li, Y.P., Zielinska, T., Ang, M., Lin, W.:Wheel-ground interaction modelling and torque distribution for a redundant mobile robot. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pp. 3362–3367 (2006). IEEE

  114. Li, Y.P., Zielinska, T., Ang, M.H., Lin, W.: In: Zielińska, T., Zieliński, C. (eds.) Vehicle Dynamics of Redundant Mobile Robots with Powered Caster Wheels, pp. 221–228. Springer, (2006)

  115. Han, K.-L., Kim, H., Lee, J.S.:The sources of position errors of omni-directional mobile robot with mecanum wheel. In: 2010 IEEE International Conference on Systems, Man and Cybernetics, pp. 581–586 (2010). IEEE

  116. Chen, P., Mitsutake, S., Isoda, T., Shi, T.: Omni-directional robot and adaptive control method for off-road running. IEEE Transactions on Robotics and Automation 18(2), 251–256 (2002)

    Google Scholar 

  117. Udengaard, M., Iagnemma, K.: Analysis, Design, and Control of an Omnidirectional Mobile Robot in Rough Terrain. Journal of Mechanical Design 131(12), 121002 (2009)

Download references

Acknowledgements

The support from Memorial University of Newfoundland and Addis Ababa Science and Technology University is dutifully acknowledged. The authors are also thankful to Mr. Ashenafi Yadessa Gemechu, for his valuable comments on this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Mulugeta Debebe Teji performed the literature survey, drafted the manuscript and revised it critically for the key content. Ting Zou is the corresponding author, responsible for organizing the manuscript sequence alignment, proofreading and revising the manuscript, and giving the final approval of the version to be published. Dinku Seyoum Zeleke performed proofreading and revising the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ting Zou.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

Not applicable.

Consent to participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teji, M.D., Zou, T. & Zeleke, D.S. A Survey of Off-Road Mobile Robots: Slippage Estimation, Robot Control, and Sensing Technology. J Intell Robot Syst 109, 38 (2023). https://doi.org/10.1007/s10846-023-01968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-01968-2

Keywords

Navigation