Skip to main content
Log in

Catalytic Growth of Carbon Nanowires on Thin SS-410 Sheet by CVD Method and Its Adsorption Behavior Toward Copper Ions

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, carbon nanowires (CNWs) were synthesized on thin stainless steel (SS-410) sheet by a chemical vapor deposition method at the growth temperature of 900 °C using acetylene gas as a precursor of carbon. Scanning electron microscopic images revealed the fibrous morphology of synthesized carbon material. At the same time, EDX analysis suggested the fibrous carbon material was predominantly grown on Fe/Cr metal catalyst particles presumably formed on the surface of a thin SS-410 sheet at high temperatures. The diameter distribution of the carbon nanowires is in the range of 40–60 nm. The carbon contents of the as-prepared material were about 50 wt % which increased to 90 wt % after nitric acid treatment due to the removal of excess metallic impurities. After purification with concentrated nitric acid, CNWs exhibited better adsorption behavior toward copper ions than that of as-prepared CNWs under similar conditions. Effect of pH, contact time, adsorbate, and adsorbent dose were studied. Langmuir isotherm model appears to be a better fit compared to the Freundlich isotherm model, thus suggesting the physisorption adsorption process between CNWs adsorbent and copper adsorbate in an aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Patel, D.K.; Kim, H.B.; Dutta, S.D.; Ganguly, K.; Lim, K.T.: Carbon nanotubes-based nanomaterials and their agricultural and biotechnological applications. Materials 13(7), 1679 (2020)

    Article  Google Scholar 

  2. Anzar, N.; Hasan, R.; Tyagi, M.; Yadav, N.; Narang, J.: Carbon nanotube-a review on synthesis, properties and plethora of applications in the field of biomedical science. Sens. Int. 1, 100003 (2020)

    Article  Google Scholar 

  3. Power, A.C.; Gorey, B.; Chandra, S.; Chapman, J.: Carbon nanomaterials and their application to electrochemical sensors: a review. Nanotechnol. Rev. 7(1), 19–41 (2018)

    Article  Google Scholar 

  4. Wei, J.; Zang, Z.; Zhang, Y.; Wang, M.; Du, J.; Tang, X.: Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu 2 O/rGO) nanocomposites. Opt. Lett. 42(5), 911–914 (2017)

    Article  Google Scholar 

  5. Liu, X.; Xu, T.; Li, Y.; Zang, Z.; Peng, X.; Wei, H.; Zha, W.; Wang, F.: Enhanced X-ray photon response in solution-synthesized CsPbBr 3 nanoparticles wrapped by reduced graphene oxide. Sol. Energy Mater. Sol. Cells 187, 249–254 (2018)

    Article  Google Scholar 

  6. Zhu, J.; Bernhardt, R.; Cui, W.; German, R.; Wagner, J.; Senkovskiy, B.V.; Grüneis, A.; Pichler, T.; Li, Y.; Li, X.; Wu, K.: Unraveling the excitonic transition and associated dynamics in confined long linear carbon chains with time-resolved resonance Raman scattering. Laser Photonics Rev. 15(12), 2100259 (2021)

    Article  Google Scholar 

  7. Wang, P.; Li, Y.; Wang, L.; Kłos, J.; Peng, Z.; Kim, N.; Bluhm, H.; Gaskell, K.; Liu, P.; Lee, S.B.; Eichhorn, B.W.: Probing the electrical double layer by operando X-ray photoelectron spectroscopy through a graphene-carbon nanotube composite window. EcoMat 2(2), e12023 (2020)

    Article  Google Scholar 

  8. Douka, A.I.; Yang, H.; Huang, L.; Zaman, S.; Yue, T.; Guo, W.; You, B.; Xia, B.Y.: Transition metal/carbon hybrids for oxygen electrocatalysis in rechargeable zinc-air batteries. EcoMat 3(1), e12067 (2021)

    Article  Google Scholar 

  9. Wang, X.; Ma, Y.; Wu, Q.; Wang, Z.; Tao, Y.; Zhao, Y.; Wang, B.; Cao, J.; Wang, H.; Gu, X.; Huang, H.: Ultra-bright and stable pure blue light-emitting diode from O, N co-doped carbon dots. Laser Photonics Rev. 15(3), 2000412 (2021)

    Article  Google Scholar 

  10. Ali, Z.; Mehmood, M.; Ahmad, J.; Li, X.; Majeed, A.; Tabassum, H.; Hou, P.-X.; Liu, C.: A platelet graphitic nanofiber-carbon nanotube hybrid for efficient oxygen evolution reaction. ChemCatChem 12(1), 360–365 (2020)

    Article  Google Scholar 

  11. Ali, Z.; Mehmood, M.; Ahmad, J.; Fatima, A.; Ali, M.: Fluorine doped CNTs for efficient OER activity outperforming iridium supported carbon electrocatalyst. J. Appl. Electrochem. 51, 1573–1581 (2021)

    Article  Google Scholar 

  12. Ali, Z.; Mehmood, M.; Ghazi, Z.A.: Herring bone graphitic nanofibers grown on NiFe-silica nanocomposites by CVD method for HER activity in alkaline media. Mater. Lett. 305, 130838 (2021)

    Article  Google Scholar 

  13. Meng, Y.; Li, J.C.; Zhao, S.Y.; Shi, C.; Li, X.Q.; Zhang, L.; Hou, P.-X.; Liu, C.; Cheng, H.M.: Fluorination-assisted preparation of self-supporting single-atom Fe-N-doped single-wall carbon nanotube film as bifunctional oxygen electrode for rechargeable Zn-Air batteries. Appl. Catal. B 294, 120239 (2021)

    Article  Google Scholar 

  14. Valenti, G.; Melchionna, M.; Montini, T.; Boni, A.; Nasi, L.; Fonda, E.; Criado, A.; Zitolo, A.; Voci, S.; Bertoni, G.; Bonchio, M.: Water-mediated electrohydrogenation of CO2 at near-equilibrium potential by carbon nanotubes/cerium dioxide nanohybrids. ACS Appl. Energy Mater. 3(9), 8509–8518 (2020)

    Article  Google Scholar 

  15. Vasileff, A.; Zheng, Y.; Qiao, S.Z.: Carbon solving carbon’s problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv. Energy Mater. 7(21), 1700759 (2017)

    Article  Google Scholar 

  16. Qasem, N.A.; Mohammed, R.H.; Lawal, D.U.: Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water 4(1), 1–15 (2021)

    Google Scholar 

  17. Barrejón, M.; Syrgiannis, Z.; Burian, M.; Bosi, S.; Montini, T.; Fornasiero, P.; Ameritech, H.; Prato, M.: Cross-linked carbon nanotube adsorbents for water treatment: tuning the sorption capacity through chemical functionalization. ACS Appl. Mater. Interfaces. 11(13), 12920–12930 (2019)

    Article  Google Scholar 

  18. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  Google Scholar 

  19. Ando, Y.; Zhao, X.; Sugai, T.; Kumar, M.: Growing carbon nanotubes. Mater. Today 7(10), 22–29 (2004)

    Article  Google Scholar 

  20. Li, X.Q.; Hou, P.-X.; Liu, C.; Cheng, H.M.: Preparation of metallic single-wall carbon nanotubes. Carbon 147, 187–198 (2019)

    Article  Google Scholar 

  21. Taha, K.K.; Elamin, M.R.; Abdulkhair, B.Y.: In situ non-catalyst synthesis of multiwall carbon nanotubes and nanofibers on commercial stainless steel cylinder. J. Porous Mater. 26(2), 525–531 (2019)

    Article  Google Scholar 

  22. Huynh, T.M.; Nguyen, S.; Nguyen, N.T.K.; Nguyen, H.M.; Do, N.U.P.; Nguyen, D.C.; Nguyen, L.H.; Nguyen, C.V.: Effects of catalyst pretreatment on carbon nanotube synthesis from methane using thin stainless-steel foil as catalyst by chemical vapor deposition method. Nanomaterials 11(1), 50 (2021)

    Article  Google Scholar 

  23. Yang, Y.; Zhang, H.; Yan, Y.: Synthesis of CNTs on stainless steel microfibrous composite by CVD: effect of synthesis condition on carbon nanotube growth and structure. Compos. B Eng. 160, 369–383 (2019)

    Article  Google Scholar 

  24. Šolić, M.; Maletić, S.; Isakovski, M.K.; Nikić, J.; Watson, M.; Kónya, Z.; Tričković, J.: Comparing the adsorption performance of multiwalled carbon nanotubes oxidized by varying degrees for removal of low levels of copper, nickel and chromium (VI) from aqueous solutions. Water 12(3), 723 (2020)

    Article  Google Scholar 

  25. Xu, J.; Cao, Z.; Zhang, Y.; Yuan, Z.; Lou, Z.; Xu, X.; Wang, X.: A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism. Chemosphere 195, 351–364 (2018)

    Article  Google Scholar 

  26. Nasir, A.M.; Goh, P.S.; Abdullah, M.S.; Ng, B.C.; Ismail, A.F.: Adsorptive nanocomposite membranes for heavy metal remediation: recent progresses and challenges. Chemosphere 232, 96–112 (2019)

    Article  Google Scholar 

  27. Simon, V.; Manilo, M.; Vanyorek, L.; Csoma, Z.; Barany, S.: Comparative study of Cu (II) adsorption by as-prepared and oxidized multi-walled N-doped carbon nanotubes. Colloid J. 82(4), 427–436 (2020)

    Article  Google Scholar 

  28. Gupta, V.K.; Agarwal, S.; Bharti, A.K.; Sadegh, H.: Adsorption mechanism of functionalized multi-walled carbon nanotubes for advanced Cu (II) removal. J. Mol. Liq. 230, 667–673 (2017)

    Article  Google Scholar 

  29. Wang, J.; Li, Z.; Li, S.; Qi, W.; Liu, P.; Liu, F.; Ye, Y.; Wu, L.; Wang, L.; Wu, W.: Adsorption of Cu (II) on oxidized multi-walled carbon nanotubes in the presence of hydroxylated and carboxylated fullerenes. PLoS ONE 8(8), e72475 (2013)

    Article  Google Scholar 

  30. Ali, Z.; Mehmood, M.; Ahmed, J.; Majeed, A.; Thebo, K.H.: CVD grown defect rich-MWCNTs with anchored CoFe alloy nanoparticles for OER activity. Mater. Lett. 259, 126831 (2020)

    Article  Google Scholar 

  31. Ali, Z.; Mehmood, M.; Ahmad, J.; Saleem, M.T.; Ahmad, B.: In-situ growth of novel CNTs-graphene hybrid structure on Ni-silica nanocomposites by CVD method for oxygen evolution reaction. Ceram. Int. 46(11), 19158–19169 (2020)

    Article  Google Scholar 

  32. Ali, Z.; Mehmood, M.; Ahmad, J.; Saleem, M.T.: Catalytic growth of CNTs & carbon onions by chemical vapor deposition on nickel-silica nanocomposite and its electrochemical catalytic study towards OER. J. Porous Mater. 27(6), 1571–1581 (2020)

    Article  Google Scholar 

  33. Ali, Z.; Mehmood, M.; Ahmad, J.; Naz, S.; Khan, Y.: Heteroatoms (N, F, O)-doped CNTs on NiCo-silica nanocomposites for oxygen evolution reaction. Arab. J. Sci. Eng. 46(1), 395–406 (2021)

    Article  Google Scholar 

  34. Ali, Z.; Mehmood, M.; Ahmad, J.; Nizam, M.N.: Synthesis of graphitic nanofibers and carbon nanotubes by CVD method on nickel chloride alcogel for excellent oxygen evolution reaction in alkaline media. Nanostruct. Nano Objects 24, 100574 (2020)

    Article  Google Scholar 

  35. Ali, Z.; Mehmood, M.; Ahmad, J.; Majeed, A.; Thebo, K.H.: MWCNTs and carbon onions grown by CVD method on nickel-cobalt alloy nanocomposites prepared via novel alcogel electrolysis technique and its oxygen evolution reaction application. Mater. Res. Express 6(10), 105627 (2019)

    Article  Google Scholar 

  36. Ali, Z.; Mehmood, M.; Ahmad, J.; Ali, M.; Ghanni, T.; Qamar, S.; Fatima, A.: Formation of carbon nanostructures on nickel acetate alcogel by CVD method and its OER electrocatalytic study in alkaline media. Appl. Phys. A 127(9), 1–10 (2021)

    Article  Google Scholar 

  37. Ali, Z.; Mehmood, M.; Aslam, M.; Haider, M.A.: In-situ grown nickel-cobalt (NiCo) alloy nanoparticles decorated on petal-like nitrogen-doped carbon spheres for efficient OER activity. ChemistrySelect 7(11), e202200196 (2022)

    Article  Google Scholar 

  38. Kim, H.; Wolfgang, S.: Iron particles in carbon nanotubes. Carbon 43(8), 1743–1748 (2005)

    Article  Google Scholar 

  39. Schaper, A.K.; Haoqing, H.; Andreas, G.; Fritz, P.: The role of iron carbide in multiwalled carbon nanotube growth. J. Catal. 222(1), 250–254 (2004)

    Article  Google Scholar 

  40. Al-Joubori, A.A.; Suryanarayana, C.: Synthesis and thermal stability of homogeneous nanostructured Fe3C (cementite). J. Mater. Sci. 53(10), 7877–7890 (2018)

    Article  Google Scholar 

  41. Gich, M.; Shafranovsky, E.A.; Roig, A.; Ślawska-Waniewska, A.; Racka, K.; Li, C.; Petrov, Y.I.; Molins, E.; Thomas, M.F.: Aerosol nanoparticles in the Fe (1–x) Cr (x) system: room-temperature stabilization of the σ phase and σ → α-phase transformation. J. Appl. Phys. 98(2), 024303 (2005)

    Article  Google Scholar 

  42. Luo, N.; Li, X.; Wang, X.; Yan, H.; Zhang, C.; Wang, H.: Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method. Carbon 48(13), 3858–3863 (2010)

    Article  Google Scholar 

  43. Salam, M.A.; Robert, B.: Synthesis and characterization of multi-walled carbon nanotubes modified with octadecylamine and polyethylene glycol. Arab. J. Chem. 10, S921–S927 (2017)

    Article  Google Scholar 

  44. Bokobza, L.; Jean-Luc, B.; Michel, C.: Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolytic graphite, multilayer graphene and multiwall carbon nanotubes) and some of their elastomeric composites. Vib. Spectrosc. 74, 57–63 (2014)

    Article  Google Scholar 

  45. Choi, Y.C.; Min, K.-I.; Jeong, M.S.: Novel method of evaluating the purity of multiwall carbon nanotubes using Raman spectroscopy. J. Nanomater. 2013(2), 1–6 (2013)

    Google Scholar 

Download references

Acknowledgements

Authors M. Mehmood and Z. Ali acknowledge the Pakistan Science Foundation (PSF) for project under PSF-NSFC 4th Call (PSF-NSFC IV-93). Z.Ali also acknowledges the Pakistan Atomic Energy Commission (PAEC) P.O. 1114, Islamabad, for financial support to present the research work at the 5th conference on emerging materials and processes (CEMP-5) held on 29–30 November 2021 at the National University of Science and Technology (NUST), Islamabad, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulfiqar Ali.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, Z., Khan, M.A., Mehmood, M. et al. Catalytic Growth of Carbon Nanowires on Thin SS-410 Sheet by CVD Method and Its Adsorption Behavior Toward Copper Ions. Arab J Sci Eng 48, 7349–7358 (2023). https://doi.org/10.1007/s13369-022-07280-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07280-9

Keywords

Navigation