Skip to main content
Log in

Heteroatoms (N, F, O)-Doped CNTs on NiCo-Silica Nanocomposites for Oxygen Evolution Reaction

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The more electronegative atoms of element like nitrogen, fluorine and oxygen in CNTs are highly desirable for electrochemical catalytic reactions like oxygen evolution reaction (OER). Herein, we report the synthesis of in situ nitrogen-doped CNTs by CVD method on fcc NiCo alloy-silica nanocomposites in ethylene precursor containing 10% acetonitrile and their catalytic behaviour for oxygen evolution in alkaline media. The XPS analysis revealed that about 2 atomic% nitrogen was successfully doped in CNTs. Although the amount of doped nitrogen was not substantial, it played a significant role in the formation of bamboo-shaped CNTs by facilitating the conical shape of nanocatalyst. The internal core of the CNTs was analysed by TEM studies and it was found that CNTs have irregular cup and cone compartments repeated at a distance of about 50 nm. The oxygenated functional groups in the form of C=O and O–F were also found which owe their presence on the surface of CNTs to the aqueous HF treatment. The unique features like the presence of heteroatoms (N, F, O) at the graphitic planes of CNTs and its bamboo shape have collectively improved the OER performance of our synthesised carbonaceous material. As a result it exhibited OER overpotential of 315 mV at current density of 10 mA/cm2, which was better than many reported carbonaceous materials in alkaline media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li, X.; Hao, X.; Abudula, A.; Guan, G.: Nanostructured catalysts for electrochemical water splitting: current state and prospects. J. Mater. Chem. A 4(31), 11973–12000 (2016)

    Article  Google Scholar 

  2. Zhang, L.; Xiao, J.; Wang, H.; Shao, M.: Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions. ACS Catal. 7(11), 7855–7865 (2017)

    Article  Google Scholar 

  3. Hu, C.; Lin, Y.; Connell, J.W.; Cheng, H.M.; Gogotsi, Y.; Titirici, M.M.; Dai, L.: Carbon-based metal-free catalysts for energy storage and environmental remediation. Adv. Mater. 31(13), e1806128 (2019)

    Article  Google Scholar 

  4. Reier, T.; Oezaslan, M.; Strasser, P.: Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal. 2(8), 1765–1772 (2012)

    Article  Google Scholar 

  5. Antolini, E.: Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal. 4(5), 1426–1440 (2014)

    Article  Google Scholar 

  6. Hu, C.; Dai, L.: Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angew. Chem. Int. Ed. Engl. 55(39), 11736–11758 (2016)

    Article  Google Scholar 

  7. Li, W.; Watzele, S.; El-Sayed, H.A.; Liang, Y.; Kieslich, G.; Bandarenka, A.S.; Rodewald, K.; Rieger, B.; Fischer, R.A.: Unprecedented high oxygen evolution activity of electrocatalysts derived from surface-mounted metal-organic frameworks. J. Am. Chem. Soc. 141(14), 5926–5933 (2019)

    Article  Google Scholar 

  8. Barakat, N.A.M.: CoNi/CNTs composite as effective and stable electrode for oxygen evaluation reaction in alkaline media. Int. J. Hydrogen Energy 43(18), 8623–8631 (2018)

    Article  Google Scholar 

  9. Li, C.; Chen, J.; Wu, Y.; Cao, W.; Sang, S.; Wu, Q.; Liu, H.; Liu, K.: Enhanced oxygen evolution reaction activity of NiFe layered double hydroxide on nickel foam-reduced graphene oxide interfaces. Int. J. Hydrogen Energy 44(5), 2656–2663 (2019)

    Article  Google Scholar 

  10. Cheng, Y.; Jiang, S.P.: Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Prog. Nat. Sci. Mater. Int. 25(6), 545–553 (2015)

    Article  Google Scholar 

  11. Shi, Q.; Zhu, C.; Du, D.; Lin, Y.: Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem. Soc. Rev. 48(12), 3181–3192 (2019)

    Article  Google Scholar 

  12. Chen, H.; Gao, Y.; Ye, L.; Yao, Y.N.; Wei, Y.; Chen, X.: An ultrathin nickel-based film electrodeposited from a Ni-Tris molecular precursor for highly efficient electrocatalytic water oxidation. Electrochim. Acta 283, 104–110 (2018)

    Article  Google Scholar 

  13. Jin, M.-X.; Pu, Y.-L.; Wang, Z.-J.; Zhang, Z.; Zhang, L.; Wang, A.-J.; Feng, J.-J.: Facile synthesis of 3D NiCoP@NiCoPOx core–shell nanostructures with boosted catalytic activity toward oxygen evolution reaction. ACS Appl. Energy Mater. 2(6), 4188–4194 (2019)

    Article  Google Scholar 

  14. Zhang, Y.X.; Zhang, C.; Guo, Y.M.; Liu, D.L.; Yu, Y.F.; Zhang, B.: Selenium vacancy-rich CoSe2 ultrathin nanomeshes with abundant active sites for electrocatalytic oxygen evolution. J. Mater. Chem. A 7(6), 2536–2540 (2019)

    Article  Google Scholar 

  15. Chen, Y.; Rui, K.; Zhu, J.; Dou, S.X.; Sun, W.: Recent progress on nickel-based oxide/(oxy)hydroxide electrocatalysts for the oxygen evolution reaction. Chemistry 25(3), 703–713 (2019)

    Article  Google Scholar 

  16. Elayappan, V.; Shanmugam, R.; Chinnusamy, S.; Yoo, D.J.; Mayakrishnan, G.; Kim, K.; Noh, H.S.; Kim, M.K.; Lee, H.: Three-dimensional bimetal TMO supported carbon based electrocatalyst developed via dry synthesis for hydrogen and oxygen evolution. Appl. Surf. Sci. 505, 144642 (2020)

    Article  Google Scholar 

  17. Mayakrishnan, G.; Elayappan, V.; Kim, I.S.; Chung, I.-M.: Sea-Island-like morphology of CuNi bimetallic nanoparticles uniformly anchored on single layer graphene oxide as a highly efficient and noble-metal-free catalyst for cyanation of aryl halides. Sci. Rep. 10(1), 1–15 (2020)

    Article  Google Scholar 

  18. Saravanamoorthy, S.; Vijayakumar, E.; Jemimah, S.; Ilangovan, A.: Catalytic reduction of p-nitrophenol and carbonyl compounds by NiO-nanoparticles fastened graphene oxide. Chem. Sci. Eng. Res. 1(1), 1–7 (2019)

    Article  Google Scholar 

  19. Pugalenthi, R.; Arunachalam, P.; Amalraj, S.; Rathinavel, J.; Subramaniyan, S.; Bhagavathsingh, J.; Samuel, V.: Covalent grafting of N-containing compound with graphene oxide: efficient electrode material for supercapacitor. Chem. Sci. Eng. Res. 1, 8–15 (2020)

    Google Scholar 

  20. Niu, H.-J.; Wang, A.-J.; Zhang, L.; Guo, J.-J.; Feng, J.-J.: Ultrafine NiCoP-decorated N, S, P-codoped hierarchical porous carbon nanosheets as an efficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution. Mater. Chem. Front. 3(9), 1849–1858 (2019)

    Article  Google Scholar 

  21. Ali, Z.; Mehmood, M.; Ahmed, J.; Majeed, A.; Thebo, K.H.: MWCNTs and carbon onions grown by CVD method on nickel-cobalt alloy nanocomposites prepared via novel alcogel electrolysis technique and its oxygen evolution reaction application. Mater. Res. Exp. 6(10), 105627 (2019)

    Article  Google Scholar 

  22. Ali, Z.; Mehmood, M.; Ahmad, J.; Malik, T.S.: Catalytic growth of CNTs and carbon onions by chemical vapor deposition on nickel-silica nanocomposite and its electrochemical catalytic study towards OER. J. Porous Mater. (2020) (in press)

  23. Ali, Z.; Mehmood, M.; Ahmed, J.; Majeed, A.; Thebo, K.H.: CVD grown defect rich-MWCNTs with anchored CoFe alloy nanoparticles for OER activity. Mater. Lett. 259, 126831 (2020)

    Article  Google Scholar 

  24. Ali, Z.; Mehmood, M.; Ahmad, J.; Malik, T.S.; Ahmad, B.: In-situ growth of novel CNTs-graphene hybrid structure on Ni-silica nanocomposites by CVD method for oxygen evolution reaction. Ceram. Int. 46(11), 19158–19169 (2020)

    Article  Google Scholar 

  25. Ali, Z.; Mehmood, M.; Ahmad, J.; Li, X.; Majeed, A.; Tabassum, H.; Hou, P.-X.; Liu, C.: A platelet graphitic nanofiber-carbon nanotube hybrid for efficient oxygen evolution reaction. ChemCatChem 12(1), 360–365 (2020)

    Article  Google Scholar 

  26. Dai, L.: Metal-free carbon electrocatalysts: recent advances and challenges ahead. Adv. Mater. 31(13), e1900973 (2019)

    Article  Google Scholar 

  27. Lu, X.; Yim, W.L.; Suryanto, B.H.; Zhao, C.: Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J. Am. Chem. Soc. 137(8), 2901–2907 (2015)

    Article  Google Scholar 

  28. Tetana, S.D.M.Z.N.; Bepete, G.; Krause, R.W.M.; Coville, N.J.: The synthesis of nitrogen-doped multiwalled carbon nanotubes using an Fe–Co/CaCO catalyst. S. Afr. J. Chem. 65, 39–49 (2012)

    Google Scholar 

  29. Muñoz-Sandoval, E.; Cortes-López, A.J.; Flores-Gómez, B.; Fajardo-Díaz, J.L.; Sánchez-Salas, R.; López-Urías, F.: Carbon sponge-type nanostructures based on coaxial nitrogen-doped multiwalled carbon nanotubes grown by CVD using benzylamine as precursor. Carbon 115, 409–421 (2017)

    Article  Google Scholar 

  30. Tao, X.Y.; Zhang, X.B.; Sun, F.Y.; Cheng, J.P.; Liu, F.; Luo, Z.Q.: Large-scale CVD synthesis of nitrogen-doped multi-walled carbon nanotubes with controllable nitrogen content on a CoxMg1−xMoO4 catalyst. Diam. Relat. Mater. 16(3), 425–430 (2007)

    Article  Google Scholar 

  31. Lv, W.; Shi, K.; Li, L.; Shao, S.: Nitrogen-doped multiwalled carbon nanotubes and their electrocatalysis towards oxidation of NO. Microchim. Acta 170(1–2), 91–98 (2010)

    Article  Google Scholar 

  32. Majeed, A.; Hou, P.-X.; Zhang, F.; Tabassum, H.; Li, X.; Li, G.-X.; Liu, C.; Cheng, H.-M.: A freestanding single-wall carbon nanotube film decorated with N-doped carbon-encapsulated ni nanoparticles as a bifunctional electrocatalyst for overall water splitting. Adv. Sci. 6(12), 1802177 (2019)

    Article  Google Scholar 

  33. Saleh, T.A.; Agarwal, S.; Gupta, V.K.: Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate. Appl. Catal. B 106(1–2), 46–53 (2011)

    Google Scholar 

  34. Cui, X.; Ren, P.; Deng, D.; Deng, J.; Bao, X.: Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 9(1), 123–129 (2016)

    Article  Google Scholar 

  35. Bhojane, P.; Sen, S.; Shirage, P.M.: Enhanced electrochemical performance of mesoporous NiCo2O4 as an excellent supercapacitive alternative energy storage material. Appl. Surf. Sci. 377, 376–384 (2016)

    Article  Google Scholar 

  36. Wepasnick, K.A.; Smith, B.A.; Bitter, J.L.; Fairbrother, D.H.: Chemical and structural characterization of carbon nanotube surfaces. Anal. Bioanal. Chem. 396(3), 1003–1014 (2010)

    Article  Google Scholar 

  37. Mishra, N.; Das, G.; Ansaldoc, A.; Genoveseb, A.; Malerbab, M.; Poviab, M.; Riccic, D.; Fabriziob, E.D.; Zittid, E.D.; Sharone, M.; Sharone, M.: Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes. J. Anal. Appl. Pyrol. 94, 91–98 (2012)

    Article  Google Scholar 

  38. Kim, S.D.; Kim, J.W.; Im, J.S.; Kim, Y.H.; Lee, Y.S.: A comparative study on properties of multi-walled carbon nanotubes (MWCNTs) modified with acids and oxyfluorination. J. Fluor. Chem. 128(1), 60–64 (2007)

    Article  Google Scholar 

  39. Ewels, C.P.; Glerup, M.: Nitrogen doping in carbon nanotubes. J. Nanosci. Nanotechnol. 5(9), 1345–1363 (2005)

    Article  Google Scholar 

  40. Boncel, S.; Pattinson, S.W.; Geiser, V.; Shaffer, M.S.; Koziol, K.K.: En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays. Beilstein J. Nanotechnol. 5, 219–233 (2014)

    Article  Google Scholar 

  41. Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C.: Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6), 833–840 (2008)

    Article  Google Scholar 

  42. Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S.Z.: Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. Engl. 51(46), 11496–11500 (2012)

    Article  Google Scholar 

  43. Fedoseeva, Y.V.; Bulusheva, L.G.; Koroteev, V.O.; Mevellec, J.Y.; Senkovskiy, B.V.; Flahaut, E.; Okotrub, A.V.: Preferred attachment of fluorine near oxygen-containing groups on the surface of double-walled carbon nanotubes. Appl. Surf. Sci. 504, 144357 (2020)

    Article  Google Scholar 

  44. Liu, L.; Anwar, S.; Ding, H.; Xu, M.; Yin, Q.; Xiao, Y.; Yang, X.; Yan, M.; Bi, H.: Electrochemical sensor based on F, N-doped carbon dots decorated laccase for detection of catechol. J. Electroanal. Chem. 840, 84–92 (2019)

    Article  Google Scholar 

  45. Maiti, J.; Kakati, N.; Lee, S.H.; Yoon, Y.S.: Fluorination of multiwall carbon nanotubes by a mild fluorinating reagent HPF6. J. Fluor. Chem. 135, 362–366 (2012)

    Article  Google Scholar 

  46. Li, L.; Yang, H.; Miao, J.; Zhang, L.; Wang, H.-Y.; Zeng, Z.; Huang, W.; Dong, X.; Liu, B.: Unraveling oxygen evolution reaction on carbon-based electrocatalysts: effect of oxygen doping on adsorption of oxygenated intermediates. ACS Energy Lett. 2(2), 294–300 (2017)

    Article  Google Scholar 

  47. Grosvenor, A.P.; Biesinger, M.C.; Smart, R.S.C.; McIntyre, N.S.: New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 600(9), 1771–1779 (2006)

    Article  Google Scholar 

  48. Bai, L.; Wen, X.; Guan, J.: Amorphous FeCoNi oxide for oxygen evolution reaction. Mater. Today Energy 12, 311–317 (2019)

    Article  Google Scholar 

  49. Bhatti, A.L.; Aftab, U.; Tahira, A.; Abro, M.I.; Samoon, M.K.; Aghem, M.H.; Bhatti, M.A.; Ibupoto, Z.H.: Facile doping of nickel into Co3O4 nanostructures to make them efficient for catalyzing the oxygen evolution reaction. RSC Adv. 10(22), 12962–12969 (2020)

    Article  Google Scholar 

  50. Heakal, F.E.-T.; Shehata, O.S.: Insight into the electrochemical and semiconducting properties of native oxide films on Ti metal and its Ti–6Al–4V alloy in borate buffer solutions. Prot. Met. Phys. Chem. Surf. 56(2), 333–342 (2020)

    Article  Google Scholar 

  51. Elkholy, A.E.; Heakal, F.E.-T.; El-Said, W.A.: Improving the electrocatalytic performance of Pd nanoparticles supported on indium/tin oxide substrates towards glucose oxidation. Appl. Catal. A 580, 28–33 (2019)

    Article  Google Scholar 

  52. Jia, Y.; Gao, X.; Teng, C.; Li, X.; Liu, Y.; Zhi, M.; Hong, Z.: Co2Ni alloy/N-doped CNTs composite as efficient hydrogen evolution reaction catalyst in alkaline medium. J. Alloy. Compd. 791, 779–785 (2019)

    Article  Google Scholar 

  53. Zhang, J.; Wang, T.; Liu, P.; Liao, Z.; Liu, S.; Zhuang, X.; Chen, M.; Zschech, E.; Feng, X.: Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017)

    Article  Google Scholar 

  54. Xu, L.; Zou, Y.; Xiao, Z.; Wang, S.: Transforming Co3O4 nanosheets into porous N-doped Co O nanosheets with oxygen vacancies for the oxygen evolution reaction. J. Energy Chem. 35, 24–29 (2019)

    Article  Google Scholar 

  55. Silva, V.D.; Simões, T.A.; Loureiro, F.J.A.; Fagg, D.P.; Figueiredo, F.M.L.; Medeiros, E.S.; Macedo, D.A.: Solution blow spun nickel oxide/carbon nanocomposite hollow fibres as an efficient oxygen evolution reaction electrocatalyst. Int. J. Hydrogen Energy 44(29), 14877–14888 (2019)

    Article  Google Scholar 

  56. Guo, H.; Feng, Q.; Zhu, J.; Xu, J.; Li, Q.; Liu, S.; Xu, K.; Zhang, C.; Liu, T.: Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from a metal–organic framework for tri-functional ORR, OER and HER electrocatalysis. J. Mater. Chem. A 7(8), 3664–3672 (2019)

    Article  Google Scholar 

  57. Liu, J.; Li, H.; Song, Y.; Wu, J.; Gong, Y.; Xu, L.; Yuan, S.; Li, H.; Ajayan, P.M.: In-situ formation of hierarchical 1D-3D hybridized carbon nanostructure supported nonnoble transition metals for efficient electrocatalysis of oxygen reaction. Appl. Catal. B 243, 151–160 (2019)

    Article  Google Scholar 

  58. Yang, F.; Zhao, P.; Hua, X.; Luo, W.; Cheng, G.; Xing, W.; Chen, S.: A cobalt-based hybrid electrocatalyst derived from a carbon nanotube inserted metal–organic framework for efficient water-splitting. J. Mater. Chem. A 4(41), 16057–16063 (2016)

    Article  Google Scholar 

  59. Sun, X.; Gao, L.; Guo, C.; Zhang, Y.; Kuang, X.; Yan, T.; Ji, L.; Wei, Q.: Sulfur incorporated CoFe2O4/multiwalled carbon nanotubes toward enhanced oxygen evolution reaction. Electrochim. Acta 247, 843–850 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our deep acknowledgement to Advanced Carbon Division, Institute of Metal Research (IMR), Chinese Academy of Sciences CAS, Shenyang, China for the provision of material facility and help in characterizations. Mr. Zulfiqar Ali is also indebted to Higher Education Commission (HEC) of Pakistan for award of International Research Support Initiative Programme (IRSIP) scholarship via award letter No (1-8/HEC/HRD/2018/8229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulfiqar Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, Z., Mehmood, M., Ahmad, J. et al. Heteroatoms (N, F, O)-Doped CNTs on NiCo-Silica Nanocomposites for Oxygen Evolution Reaction. Arab J Sci Eng 46, 395–406 (2021). https://doi.org/10.1007/s13369-020-04866-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04866-z

Keywords

Navigation