Skip to main content
Log in

Prevailing Cu-C Nanocomposite over Cu NPs for CNTs Growth: A Catalyst Study on Silicon Substrate

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Copper nanoparticles in carbon thin films (Cu NPs @ a-C: H) were prepared with various copper and carbon content by co-deposition of RF-sputtering and RF-PECVD method to use as catalysts for CNTs growth. The effect of carbon content on the catalytic properties of Cu NPs was investigated in this work. Although Cu NPs has no catalytic properties for CNTs growth, adding carbon improves the process of CNTs growth because of its effect on catalytic activity. In order to find copper and carbon content in the thin film, RBS analysis was used. These observations revealed by atomic force microscopic images. Moreover, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy were performed for CNTs characterization. In this work, Cu NPs layers with various carbon contents were fabricated in the case of investigation on the catalytic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seidlits SK, Lee JY, Schmidt CE (2008) Nanostructured scaffolds for neural applications. Nanomedicine 3:183–199

    Article  CAS  Google Scholar 

  2. Ţălu Ş, Solaymani S, Bramowicz M, Naseri N, Kulesza S, Ghaderi A (2016) RSC Adv 6:27228–27234

    Article  Google Scholar 

  3. Liu Y, Tang J, Chen X, Xin JH (2005) Decoration of carbon nanotubes with chitosan. Carbon 43(15):3178–3180

    Article  CAS  Google Scholar 

  4. Wei BQ, Vajtai R, Ajayan PM (2001) Appl Phys Lett 79:1172

    Article  CAS  Google Scholar 

  5. Gao B (2000) Chem Phys Lett 327:69

    Article  CAS  Google Scholar 

  6. Baughman RH (2000) Science 290:1310

    Article  CAS  Google Scholar 

  7. Journet C, Bernier P (1998) Appl Phys A: Mater Sci Process 67:1

    Article  CAS  Google Scholar 

  8. Dalouji V, Elahi S, Solaymani S, Ghaderi A, Elahi H (2016) Appl Phys A 122(5):1–6

    Article  CAS  Google Scholar 

  9. Graham AP, Duesberg GS, Hoenlein W, Kreupl F, Liebau M et al (2005) How do nanocarbon nanotubes fit into the semiconductor roadmap? Appl Phys A 80:1141–1151

    Article  CAS  Google Scholar 

  10. Ţălu Ş, Bramowicz M, Kulesza S, Ghaderi A, Dalouji V, Solaymani S, Fathi kenari M, Ghoranneviss M (2016) J Micro 264:143–152

    Article  Google Scholar 

  11. Mielle V (2006) Review on methods to deposit catalysts on structured surfaces. Appl Catal A Gen 315:1–17

    Article  Google Scholar 

  12. Horita T, Yamaji K, Kato T, Sakai N, Yokokawa H (2004) Imaging of labeled gas movements at the SOFC electrode/electrolyte interfaces. Solid State Ionics 169:105–113

  13. Dalouji V, Elahi SM, Solaymani S, Ghaderi A (2016) Eur Phys J Plus 131(4):1–6

    Article  CAS  Google Scholar 

  14. Gorte RJ, Park S, Vohs JM, Wang C (2000) Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Adv Mater 12(19):1465–1469

    Article  CAS  Google Scholar 

  15. Arai S, Saito T, Endo M (2010) Effects of additives on cu-MWCNT composite plating films. J Electrochem Soc 157(3):D127–D134

    Article  CAS  Google Scholar 

  16. Dalouji V, Elahi SM, Ghaderi A, Solaymani S (2016) Chinese Phys Lett 33(5):057203

    Article  Google Scholar 

  17. Garcia-Cepedes J, Thomasson S, Teo KBK, Kinloch IA, Milne WI, Pascual E, Bertran E (2009) Efficient diffusion barrier layers for the catalytic growth of carbon nanotubes on copper substrates. Carbon 47(3):613–621

    Article  Google Scholar 

  18. Huang J, Zhang Q, Wei F, QIAN W, Wang D, Hu L (2008) Liquefied petroleum gas containing sulfuras the carbon source for carbon nanotube forests. Carbon 46:291–296

    Article  CAS  Google Scholar 

  19. Ţălu Ş, Bramowicz M, Kulesza S, Solaymani S, Ghaderi A, Dejam L, Elahi SM, Boochani A (2016) Superlattice Microst 93:109–121

    Article  Google Scholar 

  20. Qian W, Yu H, Wei F, Zhang Q, Wang Z (2002) Synthesis of carbon nanotube from liquefied petroleum gas containing sulfur. Carbon 40:2961–2973

    Article  Google Scholar 

  21. Solaymani S, Elahi SM, Beryani Nezafat N, Zahrabi H, Boochani A, Naseri M (2013) Characterization of microroughness parameters in Cu-C nanocomposite prepared by co-deposition of RF-sputtering and RF-PECVD. Eur Phys J Appl Phys 64:11301

    Article  Google Scholar 

  22. King J, Li J, Du X, Shi Ch, Zhao N, Nash Ph (2008) Synthesis of carbonnanotubes and carbon onions by CVD using a Ni/Y catalyst supported on copper. Mater Sci Eng A 475:136–140

    Article  Google Scholar 

  23. Nessim GD (2010) Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale 2:1306–1323

    Article  CAS  Google Scholar 

  24. Raty JY, Gygi F, Galli G (2005) Growth of carbon nanotubes on metal nanoparticles: A microscopic mechanism from Ab initio molecular dynamics simulations. Phys Rev Lett 95:9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Hantehzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadyar, S., Hantehzadeh, M.R., Ghoranneviss, M. et al. Prevailing Cu-C Nanocomposite over Cu NPs for CNTs Growth: A Catalyst Study on Silicon Substrate. Silicon 10, 907–912 (2018). https://doi.org/10.1007/s12633-016-9547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9547-0

Keywords

Navigation