Skip to main content
Log in

Formation of carbon nanostructures on nickel acetate alcogel by CVD method and its OER electrocatalytic study in alkaline media

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Facile and cost-effective methods to synthesize non-noble transition metal with electrically conductive carbon-nanostructured materials are desirable for the possible replacement of noble metals like iridium and ruthenium-based anode materials in alkaline water electrolyzer. Herein, we report a simple method to produce nickel-carbon nanotube (CNT) nanocomposites by CVD method using nickel acetate alcogel. The molar concentration of nickel in acetate alcogel was observed to be controlling factor for the growth of extremely small nickel nanoparticles of the order 2–5 nm in diameter on the tips and walls of the CNTs. Moreover, it was found experimentally that the higher concentration of nickel in acetate alcogel nucleated predominantly big-faceted globular particles presumably composed of nickel nanocrystals of the order 50–1000 nm in diameter and scarce CNTs of the diameter 40–80 nm. In addition, oxygen evolution reaction activities of sample synthesized by CVD of carbon using 0.333 molar nickel in acetate alcogel was found to better than the sample with 0.495 molar concentration of nickel in acetate gel. The better OER performance of the sample was attributed to the presence well-separated distribution of catalytic nickel nanoparticles on the electrically conductive CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Li, X. Hao, A. Abudula, G. Guan, Nanostructured catalysts for electrochemical water splitting: current state and prospects. J. Mater. Chem. A 4(31), 11973–12000 (2016)

    Article  Google Scholar 

  2. R. Venkatkarthick, D.J. Davidson, S. Vasudevan, G. Sozhan, S. Ravichandran, An investigation of interfacial and photoelectrochemical performance of thermally prepared C, N-codoped TiO2 photoanodes for water splitting. Chem. Sel. 2(1), 288–294 (2017)

    Google Scholar 

  3. R. Venkatkarthick, D.J. Davidson, S. Ravichandran, S. Vasudevan, G. Sozhan, α-Fe2O3/TiO2 heterostructured photoanode on titanium substrate for photoelectrochemical water electrolysis. Mater. Chem. Phys. 199, 249–256 (2017)

    Article  Google Scholar 

  4. L. Zhang, J. Xiao, H. Wang, M. Shao, Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions. ACS Catal. 7(11), 7855–7865 (2017)

    Article  Google Scholar 

  5. L. Zhang, J. Xiao, H. Wang, M. Shao, Carbon-based metal-free catalysts for energy storage and environmental remediation. Adv. Mater. 31(13), e1806128 (2019)

    Article  Google Scholar 

  6. C. Hu, L. Dai, Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angew. Chem. Int. Ed. 55(39), 11736–11758 (2016)

    Article  Google Scholar 

  7. R. Venkatkarthick, G.V.M. Kiruthika, D.J. Davidson, S. Ravichandran, G. Sozhan, S. Vasudevan, New insight into understand the enhanced photoconductivity properties of Ti(O2) plate spurted with Al2O3 for water oxidation. Chem. Sel. 1(15), 5037–5041 (2016)

    Google Scholar 

  8. B. Dong, X. Zhao, G.Q. Han, X. Li, X. Shang, Y.R. Liu, W.H. Hu, Y.M. Chai, H. Zhao, C.G. Liu, Two-step synthesis of binary Ni–Fe sulfides supported on nickel foam as highly efficient electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 4(35), 13499–13508 (2016)

    Article  Google Scholar 

  9. R. Venkatkarthick, S. Elamathi, D. Sangeetha, R. Balaji, B.S. Kannan, S. Vasudevan, D.J. Davidson, G. Sozhan, S. Ravichandran, Studies on polymer modified metal oxide anode for oxygen evolution reaction in saline water. J. Electroanal. Chem. 697, 1–4 (2013)

    Article  Google Scholar 

  10. R. Venkatkarthick, D.J. Davidson, S. Ravichandran, S. Vengatesan, G. Sozhan, S. Vasudevan, Eco-friendly and facilely prepared silica modified amorphous titania (TiO2–SiO2) electrocatalyst for the O2 and H2 evolution reactions. Catalysis Sci. Technol. 5(11), 5016–5022 (2015)

    Article  Google Scholar 

  11. F. Lyu, Q. Wang, S.M. Choi, Y. Yin, Noble-Metal-free electrocatalysts for oxygen evolution. Small 15(1), e1804201 (2019)

    Article  Google Scholar 

  12. N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46(2), 337–365 (2017)

    Article  Google Scholar 

  13. M.-I. Jamesh, X. Sun, Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting–A review. J. Power Sour. 400, 31–68 (2018)

    Article  ADS  Google Scholar 

  14. X. Ren, Q. Wei, P. Ren, Y. Wang, R. Chen, Synthesis of flower-like MoSe2@MoS2 nanocomposites as the high efficient water splitting electrocatalyst. Mater. Lett. 231, 213–216 (2018)

    Article  Google Scholar 

  15. X. Lu, W.L. Yim, B.H. Suryanto, C. Zhao, Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J. Am. Chem. Soc. 137(8), 2901–2907 (2015)

    Article  Google Scholar 

  16. Z. Ali, M. Mehmood, J. Ahmed, X. Li, A. Majeed, H. Tabassum, P.X. Hou, C. Liu, A platelet graphitic nanofiber- carbon nanotube hybrid for efficient oxygen evolution reaction. ChemCatChem 12, 360–365 (2020)

    Article  Google Scholar 

  17. Z. Ali, M. Mehmood, J. Ahmed, A. Majeed, K.H. Thebo, CVD grown defect rich-MWCNTs with anchored CoFe alloy nanoparticles for OER activity. Mater. Lett. 259, 126831 (2020)

    Article  Google Scholar 

  18. L. Li, H. Yang, J. Miao, L. Zhang, H.Y. Wang, Z. Zeng, W. Huang, X. Dong, B. Liu, Unraveling oxygen evolution reaction on carbon-based electrocatalysts: effect of oxygen doping on adsorption of oxygenated intermediates. ACS Energy Lett. 2(2), 294–300 (2017)

    Article  Google Scholar 

  19. M. Sun, X. Wu, Z. Xie, X. Deng, J. Wen, Q. Huang, B. Huang, Tailoring platelet carbon nanofibers for high-purity Pyridinic-N doping: a novel method for synthesizing oxygen reduction reaction catalysts. Carbon 125, 401–408 (2017)

    Article  Google Scholar 

  20. S. Philippe, M. Corrias, P. Kalck, Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A 253(2), 337–358 (2003)

    Article  Google Scholar 

  21. X. Cui, P. Ren, D. Deng, J. Deng, X. Bao, Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 9(1), 123–129 (2016)

    Article  Google Scholar 

  22. N.A.M. Barakat, CoNi/CNTs composite as effective and stable electrode for oxygen evaluation reaction in alkaline media. Int. J. Hydrogen Energy 43(18), 8623–8631 (2018)

    Article  Google Scholar 

  23. Z. Ali, M. Mehmood, J. Ahmad, M.T. Saleem, B. Ahmad, In-situ growth of novel CNTs-graphene hybrid structure on Ni-silica nanocomposites by CVD method for oxygen evolution reaction. Ceram. Int. 46(11), 19158–19169 (2020)

    Article  Google Scholar 

  24. C.-G. Wang, X.-H. Shao, R.-S. Xue, The Formation of carbon nanostructures via catalytic pyrolysis of naphthalene under its autogenic pressure. J. Nanomater. 2015, 1–5 (2015)

    Article  Google Scholar 

  25. L. Yang, X. Zhao, R. Yang, P. Zhao, Y. Li, P. Yang, J. Wang, D. Astruc, In-situ growth of carbon nanotubes on Ni/NiO nanofibers as efficient hydrogen evolution reaction catalysts in alkaline media. Appl. Surf. Sci. 491, 294–300 (2019)

    Article  ADS  Google Scholar 

  26. C.J. Oluigbo, M. Xie, N. Ullah, S. Yang, W. Zhao, M. Zhang, X. Lv, Y. Xu, J. Xie, Novel one-step synthesis of nickel encapsulated carbon nanotubes as efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 44(5), 2685–2693 (2019)

    Article  Google Scholar 

  27. A. Majeed, P-X. Hou, F. Zhang, H. Tabassum, X. Li, G-X. Li, C. Liu and H-M. Cheng (2019), A Freestanding Single‐Wall Carbon Nanotube Film Decorated with N‐Doped Carbon‐Encapsulated Ni Nanoparticles as a Bifunctional Electrocatalyst for Overall Water Splitting," Advanced Science, p. 1802177.

  28. S.K.T. Aziz, B. Malik, H.K. Sadhanala, A. Gedanken, M. Noked, G.D. Nessim, Nickel-rich phosphide (Ni12P5) nanosheets coupled with oxidized multiwalled carbon nanotubes for oxygen evolution. ACS Appl. Nano Mater. 3(11), 10914–10921 (2020)

    Article  Google Scholar 

  29. Z. Ali, M. Mehmood, J. Ahmad, A. Majeed, K.H. Thebo, MWCNTs and carbon onions grown by CVD method on nickel-cobalt alloy nanocomposites prepared via novel alcogel electrolysis technique and its oxygen evolution reaction application. Mater. Res. Express 6(10), 105627 (2019)

    Article  ADS  Google Scholar 

  30. Z. Ali, M. Mehmood, J. Ahmad, M.N. Nizam, Synthesis of graphitic nanofibers and carbon nanotubes by CVD method on Nickel chloride alcogel for excellent oxygen evolution reaction in alkaline media. Nanostruct. Nano Objects 24, 100574 (2020)

    Article  Google Scholar 

  31. Z. Ali, M. Mehmood, J. Ahmad, M.T. Saleem, Catalytic growth of CNTs & carbon onions by chemical vapor deposition on nickel-silica nanocomposite and its electrochemical catalytic study towards OER. J. Porous Mater. 27(6), 1571–1581 (2020)

    Article  Google Scholar 

  32. Z. Ali, M. Mehmood, J. Ahmad, S. Naz, Y. Khan, Heteroatoms (N, F, O)-doped CNTs on NiCo-Silica nanocomposites for oxygen evolution reaction. Arab. J. Sci. Eng. 46(1), 395–406 (2021)

    Article  Google Scholar 

  33. M.Z. Rana, M. Mehmood, J. Ahmad, M. Aslam, S.K. Hasanain, S. Hameed, Synthesis of nickel nanoparticles in silica by alcogel electrolysis. J. Nanopart. Res. 13(1), 375–384 (2011)

    Article  ADS  Google Scholar 

  34. Z. Ali, M. Mehmood, J. Ahmad, A. Fatima, and M. Ali, "Fluorine doped CNTs for efficient OER activity outperforming iridium supported carbon electrocatalyst," Journal of Applied Electrochemistry, 2021.

  35. N. Mishra, G. Das, A. Ansaldo, A. Genovese, M. Malerba, M. Povia, D. Ricci, E.D. Fabrizio, E.D. Zitti, M. Sharon, M. Sharon, Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes. J. Anal. Appl. Pyrol. 94, 91–98 (2012)

    Article  Google Scholar 

  36. M.E. Plonska-Brzezinska, A. Lapinski, A.Z. Wilczewska, A.T. Dubis, A.V. Cerdas, K. Winkler, L. Echegoyen, The synthesis and characterization of carbon nano-onions produced by solution ozonolysis. Carbon 49(15), 5079–5089 (2011)

    Article  Google Scholar 

  37. N.D. Dung, N.V. Chuc, N.T.T. Tam, N.H. Quang, P.H. Khoi, P.N. Minh, Carbon nanotube growth over iron nanoparticles formed on CaCO3 Support by using hydrogen reduction. J. Korean Phys. Soc. 52(5), 1372–1377 (2008)

    Article  ADS  Google Scholar 

  38. S.M. Toussi, A.F. Razi, A.L. Chuah, A.R. Suraya, Effect of synthesis condition on the growth of SWCNTS via catalytic chemical vapour deposition. Sains Malaysiana 40(3), 197–201 (2011)

    Google Scholar 

  39. S. Ahmed, J. Shim, H.-J. Sun, and G. Park (2020). Transition Metals (Co or Ni) Encapsulated in Carbon Nanotubes Derived from Zeolite Imidazolate Frameworks (ZIFs) as Bifunctional Catalysts for the Oxygen Reduction and Evolution Reactions. physica status solidi A. vol. 217, no. 12.

  40. V.D. Silva, T.A. Simões, F.J.A. Loureiro, D.P. Fagg, F.M.L. Figueiredo, E.S. Medeiros, D.A. Macedo, Solution blow spun nickel oxide/carbon nanocomposite hollow fibres as an efficient oxygen evolution reaction electrocatalyst. Int. J. Hydrog. Energy 44(29), 14877–14888 (2019)

    Article  Google Scholar 

  41. H. Guo, Q. Feng, J. Zhu, J. Xu, Q. Li, S. Liu, K. Xu, C. Zhang, T. Liu, Cobalt nanoparticle-embedded nitrogen-doped carbon/carbon nanotube frameworks derived from a metal–organic framework for tri-functional ORR, OER and HER electrocatalysis. J. Mater. Chem. A 7(8), 3664–3672 (2019)

    Article  Google Scholar 

  42. J. Liu, H. Li, Y. Song, J. Wu, Y. Gong, L. Xu, S. Yuan, H. Li, P.M. Ajayan, In-situ formation of hierarchical 1D–3D hybridized 123 Author’s personal copy Arabian journal for science and engineering carbon nanostructure supported nonnoble transition metals for efficient electrocatalysis of oxygen reaction. Appl. Catal. B 243, 151–160 (2019)

    Article  Google Scholar 

  43. F. Yang, P. Zhao, X. Hua, W. Luo, G. Cheng, W. Xing, S. Chen, A cobalt-based hybrid electrocatalyst derived from a carbon nanotube inserted metal–organic framework for efficient watersplitting. J. Mater. Chem. A 4(41), 16057–16063 (2016)

    Article  Google Scholar 

  44. X. Sun, L. Gao, C. Guo, Y. Zhang, X. Kuang, T. Yan, L. Ji, Q. Wei, Sulfur incorporated CoFe2O4/multiwalled carbon nanotubes toward enhanced oxygen evolution reaction. Electrochima Acta 247, 843–850 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulfiqar Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, Z., Mehmood, M., Ahmad, J. et al. Formation of carbon nanostructures on nickel acetate alcogel by CVD method and its OER electrocatalytic study in alkaline media. Appl. Phys. A 127, 655 (2021). https://doi.org/10.1007/s00339-021-04822-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04822-0

Keywords

Navigation